التماكب وأنواعه

‫ﺍﻟﺘﻤﺎﻛﺐ‬
‫ﳝﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﻟﻌﺪﺓ ﻣﺮﻛﺒﺎﺕ ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻣﺔ ﻧﻔﺴﻬﺎ ﻏﲑ ﺃ‪‬ﺎ ﲣﺘﻠﻒ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟـﺒﻌﺾ ﰲ‬
‫ﺍﳋﺼﺎﺋﺺ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﻭﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﻭﻛﺬﻟﻚ ﺍﻟﺒﻨﺎﺋﻴﺔ ﻭﺑﻌﺾ ﺍﳋﻮﺍﺹ ﺍﻷﺧﺮﻯ ﻭﺑﺎﻟﺘﺎﱄ ﻧﻘﻮﻝ ﻋﻦ‬
‫ﻫﺬﻩ ﺍﳌﺮﻛﺒﺎﺕ ﺃ‪‬ﺎ ﻣﺘﻤﺎ ﻛﺒﺎﺕ ﺃﻭ ﺍﻳﺰﻭﻣﲑﺍﺕ ﻓﻤﺜﻼ ﺗﻜﻮﻥ ‪ C4H9Br‬ﻋﺪﺓ ﺍﻳﺰﻭﻣﲑﺍﺕ ﻣﻨﻬﺎ‪:‬‬
‫‪Br‬‬
‫;‬
‫‪CH3CH2CHCH3‬‬
‫‪CH3CH2CH2CH2Br‬‬
‫‪1‬‬
‫‪2‬‬
‫‪CH3‬‬
‫‪CH3 CCH3‬‬
‫‪CH3‬‬
‫;‬
‫‪CH3 CHCH2 Br‬‬
‫‪Br‬‬
‫‪4‬‬
‫ﺃﻗﺴﺎﻡ ﺍﻟﺘﻤﺎﻛﺐ‬
‫ﻟﻠﺘﻤﺎﻛﺐ ﻋﺪﺓ ﺃﻗﺴﺎﻡ ﻧﺬﻛﺮ ﻣﻨﻬﺎ ﺍﳌﺘﻤﺎﻛﺒﺎﺕ ﺍﳌﻮﺿﺤﺔ ﰲ ﺍﳌﺨﻄﻂ ﺃﺩﻧﺎﻩ‬
‫‪3‬‬
‫ﺍﻟﺘﻤﺎﻛﺐ ﺍﻟﺒﻨﺘﻮﻱ‬
‫ﺣﻴﺚ ﲣﺘﻠﻒ ﺍﳌﺘﻤﺎﻛﺒﺎﺕ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﻓﻘﻂ ﰲ ﺗﺴﻠﺴﻞ ﺍﻟﺬﺭﺍﺕ ﰲ ﺍﳉﺰﻳﺌـﻰ ﺃﻱ ﰲ‬
‫ﺑﻨﻴﺘﻬﺎ ﻭﺗﺮﻛﻴﺒﻬﺎ ‪.C6H12‬‬
‫‪CH3‬‬
‫;‬
‫‪Methylcyclopentane‬‬
‫‪Cyclohexane‬‬
‫ﻟﻠﺼﻴﻐﺔ‬
‫‪C5H10O2‬‬
‫ﺛﻼﺛﺔ ﺍﻳﺰﻭﻣﲑﺍﺕ ‪.‬‬
‫‪CH3CH2CH2CH2COOH‬‬
‫‪pentanoic acid‬‬
‫‪(CH3)2CHCH2COOH‬‬
‫;‬
‫‪acid‬‬
‫‪3 - Methylbutanoic‬‬
‫‪CH3‬‬
‫‪CH3CCOOH‬‬
‫‪acid‬‬
‫‪CH3‬‬
‫‪2,2 - Dimethylpropanoic‬‬
‫ﺍﻟﺘﻤﺎﻛﺐ ﺍﳌﻮﺿﻌﻲ‬
‫ﲣﺘﻠﻒ ﺍﻹﻳﺰﻭﻣﲑﺍﺕ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﻓﻘﻂ ﲟﻮﺿﻊ ﺍﻟﺰﻣﺮﺓ ﺍﻟﻮﻇﻴﻔﻴﺔ ﻓـﻨﻼﺣﻆ ﰲ ﺍﻷﻣﺜﻠـﺔ‬
‫ﺃﺩﻧﺎﻩ ﺍﻻﺧﺘﻼﻑ ﰲ ﻣﻮﺿﻊ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪H3C‬‬
‫‪H3C‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪2 -Methylhexene -3‬‬
‫‪3 -Methylhexene -2‬‬
‫ﺍﻟﺘﻤﺎﻛﺐ ﺍﻟﻮﻇﻴﻔﻲ‬
‫ﻳﻜﻮﻥ ﳍﺬﻩ ﺍﻹﻳﺰﻭﻣﲑﺍﺕ ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻣﺔ ﻧﻔﺴﻬﺎ ﻭﻟﻜﻦ ﲣﺘﻠﻒ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﻓﻘﻂ ﺑﺎﻟﺰﻣﺮﺓ‬
‫ﺍﻟﻮﻇﻴﻔﻴﺔ ﻓﺎﻟﺼﻴﻐﺔ ‪ C4H10O‬ﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺻﻴﻐﺔ ﻛﺤﻮﻟﻴﺔ ﺃﻭ ﺇﻳﺜﲑﻳﺔ ‪.‬‬
‫‪(CH3)2CHCH2OH‬‬
‫‪Isobutanole‬‬
‫;‬
‫‪CH3OCH2CH2CH3‬‬
‫;‬
‫ﺃﻣﺎ ﺍﳌﺮﻛﺐ‬
‫‪CH3CH2OCH2CH3‬‬
‫‪Diethylether‬‬
‫‪Methylpropylether‬‬
‫‪C4H8O‬‬
‫‪CH3CH2CH2CH2OH‬‬
‫‪n-Butanole‬‬
‫ﻓﻠﻪ ﺍﻳﺰﻭﻣﲑﺍﺕ ﲣﺘﻠﻒ ﻋﻦ ﺑﻌﻀﻬﺎ ﰲ ﻧﻮﻉ ﺍﻟﺰﻣﺮﺓ ﻧﺬﻛﺮ ﻣﻨﻬﺎ‬
‫‪CH3CH2CH2CHO‬‬
‫‪Butanal‬‬
‫‪CH3CHCHCH3‬‬
‫‪o‬‬
‫‪,‬‬
‫‪2 3 - Epoxybutane‬‬
‫‪CH3COCH2CH3‬‬
‫;‬
‫;‬
‫‪Butanone -2‬‬
‫‪CH3OCH2CH = CH2‬‬
‫‪Allylmethylether‬‬
‫ﺍﻟﺘﻤﺎﻛﺐ ﺍﻟﻄﻮﻃﻮﻣﲑﻱ‬
‫ﻳﻨﺸﺄ ﻫﺬﺍ ﺍﻟﺘﻤﺎﻛﺐ ﰲ ﺍﳌﺮﻛﺒﺎﺕ ﺍﻟﱵ ﲢﺘﻮﻱ ﻋﻠﻰ ﳎﻤﻮﻋﺔ ﻣﻴﺘﻴﻠﲔ ﰲ ﺍﳌﻮﻗـﻊ ﺃﻟﻔـﺎ‪α-‬‬
‫ﺑﺎﻟﻨﺴﺒﺔ ‪‬ﻤﻮﻋﺔ ﺍﻟﻜﺮﺑﻮﻧﻴﻞ ﲝﻴﺚ ﻳﺘﻜﻮﻥ ﻋﻦ ﺫﻟﻚ ﺍﻟﺸﻜﻞ ﺍﻟﻜﻴﺘﻮﱐ ﻭﺍﻟﺸﻜﻞ ﺍﻹﻳﻨﻮﱄ‬
‫‪O‬‬
‫‪OH‬‬
‫‪CH3CH = CCH3‬‬
‫‪Enoforme‬‬
‫‪OH‬‬
‫‪CH3C = CHCOOC2H5‬‬
‫‪O‬‬
‫‪H‬‬
‫‪H‬‬
‫‪CH3CH2CCH3‬‬
‫‪Ketoforme‬‬
‫‪O‬‬
‫‪CH3CCH2COOC2H5‬‬
‫‪OH‬‬
‫ﺍﻟﺘﻤﺎﻛﺐ ﺍﳍﻨﺪﺳﻲ‬
‫ﻳﻨﺸﺄ ﺍﻟﺘﻤﺎﻛﺐ ﺍﳍﻨﺪﺳﻲ ﻧﺘﻴﺠﺔ ﻋﺪﻡ ﺍﻟﺪﻭﺭﺍﻥ ﺣﻮﻝ ﺭﺍﺑﻄﺔ ﻣﻌﻴﻨﺔ ﰲ ﺍﳉﺰﻳﺌﻰ ﻭﻣـﻦ ﺃﻣﺜﻠـﺔ‬
‫ﺍﻟﺮﻭﺍﺑﻂ ‪ C = C ; C = N ; N = N‬ﻭﻛﺬﻟﻚ ﺍﳌﺮﻛﺒﺎﺕ ﺍﳊﻠﻘﻴﺔ‪.‬‬
‫‪CH2CH3‬‬
‫‪CI‬‬
‫‪CI‬‬
‫‪C=C‬‬
‫‪CI‬‬
‫_‬
‫‪N=N‬‬
‫‪:..‬‬
‫‪C=C‬‬
‫;‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪Ph‬‬
‫‪OH‬‬
‫‪Trans‬‬
‫‪Ph‬‬
‫_ ‪Cis‬‬
‫;‬
‫‪.:.‬‬
‫‪CI‬‬
‫_ ‪Cis‬‬
‫‪CH3‬‬
‫‪H‬‬
‫‪C=N‬‬
‫‪..‬‬
‫_ ‪Trans‬‬
‫‪Ph‬‬
‫ﺣﻴﺚ ﺗﺘﺸﺎﺑﻪ ﺍﳌﺮﻛﺒﺎﺕ ﺍﳍﻨﺪﺳﻴﺔ ﻓﻴﻤﺎ ﺑﻴﻨﻬﺎ ﻣﻊ ﺍﺧﺘﻼﻑ ﻣﻮﻗﻊ ﺍ‪‬ﻤﻮﻋﺘﲔ ﺍﳌﺘﺸﺎ‪‬ﺘﲔ ﺣـﻮﻝ‬
‫ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺃﻣﺎ ﺗﻘﻌﺎﻥ ﰲ ﺟﻬﺔ ﻭﺍﺣﺪﺓ ﻭﺑﺎﻟﺘﺎﱄ ﺍﳌﺮﻛﺐ ﻳﺴﻤﻰ ﺳﻴﺲ ‪ cis‬ﺃﻭ ﰲ ﺟﻬـﺘﲔ‬
‫ﳐﺘﻠﻔﺘﲔ ﻣﻦ ﻣﺴﺘﻮﻯ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﻭﺍﳌﺮﻛﺐ ﻳﺴﻤﻰ ﺗﺮﺍﻧﺲ ‪.trans‬‬
‫‪H‬‬
‫‪CH2CH3‬‬
‫‪CH2CH3‬‬
‫‪C=C‬‬
‫‪-3‬‬
‫‪CH2CH2Br‬‬
‫‪ethylhexene‬‬
‫‪-3 -‬‬
‫;‬
‫‪C=C‬‬
‫‪CH3CH2‬‬
‫‪Trans - 1 - Bromo‬‬
‫‪Br‬‬
‫‪H‬‬
‫‪H‬‬
‫‪Cis _ pentene - 2‬‬
‫‪H‬‬
‫‪C=C‬‬
‫‪Br‬‬
‫‪CH2CH3‬‬
‫‪,‬‬
‫‪Trans - 1 2 - Dibromobutene -1‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫;‬
‫‪CH3‬‬
‫‪C=C‬‬
‫‪NO2‬‬
‫‪H‬‬
‫‪Cis _ 2 - nitrobutene - 2‬‬
‫ﻻ ﺗﻜﺘﺴﺐ ﺍﳌﺮﻛﺒﺎﺕ ﺍﻟﱵ ﲢﺘﻮﻱ ﻋﻠﻰ ﳎﻤﻮﻋﺘﲔ ﻣﺘﺸﺎ‪‬ﺘﲔ ﻣﺘﺼﻠﺘﲔ ﺑﻨﻔﺲ ﺫﺭﺓ ﺍﻟﻜﺮﺑـﻮﻥ‬
‫ﺍﳌﺮﺗﺒﻄﺔ ﺑﺎﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﻋﻠﻰ ﺍﻟﺘﺸﻜﻴﻞ ﺍﳍﻨﺪﺳﻲ‪.‬‬
‫‪CH2CH3‬‬
‫‪H‬‬
‫‪CH3‬‬
‫‪C=C‬‬
‫‪CH3‬‬
‫‪C=C‬‬
‫;‬
‫‪H‬‬
‫‪CH2CH3‬‬
‫‪CH3‬‬
‫‪3 - Ethyl- 2 -methylpentene - 2‬‬
‫‪H‬‬
‫‪Propene‬‬
‫ﺗﺘﻤﻴﺰ ﺍﳌﺮﻛﺒﺎﺕ ﺍﳊﻠﻘﻴﺔ ﻛﺬﻟﻚ ﺑﺎﻟﺘﻤﺎﻛﺐ ﺍﳍﻨﺪﺳﻲ‪.‬‬
‫‪CI‬‬
‫‪CI‬‬
‫‪H‬‬
‫‪CI‬‬
‫‪H‬‬
‫‪H‬‬
‫‪CI‬‬
‫‪H‬‬
‫;‬
‫‪H‬‬
‫‪Trans -1,2 -dichlorocyclopropane‬‬
‫‪H‬‬
‫‪H‬‬
‫‪H‬‬
‫‪Cis -1,2 -dichlorocyclopropane‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪H‬‬
‫‪CI‬‬
‫‪H‬‬
‫‪H‬‬
‫;‬
‫‪CI‬‬
‫‪H‬‬
‫‪Trans -1 -chloro-3 -methylcyclopentane‬‬
‫‪Cis-1 -chloro-3 -methylcyclopentane‬‬
‫‪H‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪H‬‬
‫‪CH3‬‬
‫‪Trans -1,4 - dimethylcyclohexane‬‬
‫ﻋﻨﺪ ﻭﺟﻮﺩ ﳎﺎﻣﻴﻊ ﳐﺘﻠﻔﺔ ﲤﺎﻣﺎ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﻭﻣﺘﺼﻠﺔ ﺑـﺬﺭﰐ ﺍﻟﻜﺮﺑـﻮﻥ ﺍﳌـﺮﺗﺒﻄﺘﲔ‬
‫ﺑﺎﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﻓﺈﻧﻪ ﻳﺴﺘﺨﺪﻡ ﻧﻈﺎﻡ ﺍﻟﺘﺘﺎﺑﻊ ﻟﻜﺎﻥ ‪ -‬ﺍﻧﻘﻮﻟﺪ ) ‪( E, Z‬ﻛﻤﺎ ﻳﺴﺘﺨﺪﻡ ﻫﺬﺍ ﺍﻟﻨﻈﺎﻡ‬
‫ﰲ ﺍﻷﻧﻈﻤﺔ ﺍﳊﻠﻘﻴﺔ‪ ,‬ﻭﻳﻌﺘﻤﺪ ﻋﻠﻰ ﺗﺮﺗﻴﺐ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺬﺭﻳﺔ ﻟﻠﺬﺭﺍﺕ ﺃﻭ ﺍ‪‬ﺎﻣﻴﻊ ﺍﳌﺮﺗﺒﻄﺔ ﺑـﺬﺭﰐ‬
‫ﺍﻟﻜﺮﺑﻮﻥ ﺍﳌﺘﺼﻠﺘﲔ ﺑﺮﺍﺑﻄﺔ ﺛﻨﺎﺋﻴﺔ‪ .‬ﺣﻴﺚ ﺗﺄﺧﺬ ﺍﻟﺬﺭﺓ ﺃﻭ ﺍ‪‬ﻤﻮﻋﺔ ﺫﺍﺕ ﺍﻟﻌﺪﺩ ﺍﻟﺬﺭﻱ ﺍﻷﻛـﱪ‬
‫ﺃﻭﻟﻮﻳﺔ ﺍﻟﺘﺮﻗﻴﻢ )‪ (1‬ﰒ ﺗﻠﻴﻬﺎ ﺍﻟﺬﺭﺓ ﺃﻭ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﺧﺮﻯ ﲝﻴﺚ ﺗﺄﺧﺬ ﺍﻟﺮﻗﻢ)‪ (2‬ﻭﻫﻜﺬﺍ ﺫﺭﺍﺕ‬
‫ﺃﻭ ﳎﺎﻣﻴﻊ ﺍﻟﺬﺭﺓ ﺍﻟﺜﺎﻧﻴﺔ‪ .‬ﻓﺈﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺬﺭﺍﺕ ﺃﻭ ﺍ‪‬ﺎﻣﻴﻊ ﺫﺍﺕ ﺍﻷﻭﻟﻮﻳﺔ ﺗﻘﻊ ﰲ ﺟﻬﺔ ﻭﺍﺣـﺪﺓ‬
‫ﻣﻦ ﻣﺴﺘﻮﻯ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺗﻌﻄﻰ ﺍﻟﺘﺴﻤﻴﺔ ﺣﺮﻑ )‪ ,(Z‬ﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺘﺎ ﰲ ﺟﻬﺘﲔ ﻣﺘﻌﺎﻛﺴﺘﲔ‬
‫ﻓﺘﻌﻄﻰ ﺍﻟﺘﺴﻤﻴﺔ ﺣﺮﻑ )‪.(E‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪C = C‬‬
‫‪C = C‬‬
‫;‬
‫‪2‬‬
‫‪2‬‬
‫‪1‬‬
‫) ‪CH2CH3 ( 2‬‬
‫‪(1 ) CI‬‬
‫) ‪CI(1‬‬
‫) ‪COOH (1‬‬
‫‪) CH3‬‬
‫‪2‬‬
‫(‬
‫) ‪F (2‬‬
‫‪( Z )-3-Chlorohexene -2‬‬
‫‪( E )-2-Bromo-3 -nitrohexene -2‬‬
‫‪( 1 ) CH3‬‬
‫‪C=C‬‬
‫‪(1 ) Br‬‬
‫) ‪CH2CH2CH3 ( 2‬‬
‫‪(Z )-1 - Bromo-1-chloro-2 - floro-2-iodoethene‬‬
‫‪(2 )H‬‬
‫‪3‬‬
‫‪C=C‬‬
‫‪(1 ) Br‬‬
‫‪H‬‬
‫‪( 2 )CH‬‬
‫) ‪NO2( 1‬‬
‫;‬
‫‪C=C‬‬
‫‪(2 ) H‬‬
‫) ‪CH2CH2CH3 ( 2‬‬
‫‪( 2 ) CI‬‬
‫‪C=C‬‬
‫‪3‬‬
‫‪C=C‬‬
‫‪(E) -3 - Chloro -2 - ethyl-2 -butenoic acid‬‬
‫‪I‬‬
‫‪(1 )CH‬‬
‫;‬
‫‪C=C‬‬
‫) ‪CH2CH3( 1‬‬
‫‪2‬‬
‫_ )‪(E‬‬
‫_‪(Z) -‬‬
‫) ‪(1‬‬
‫‪1‬‬
‫‪H‬‬
‫‪H‬‬
‫‪C=C‬‬
‫) ‪CH2CH3( 1‬‬
‫‪CH3‬‬
‫‪C=C‬‬
‫) ‪H(2‬‬
‫‪(E , Z) - Heptadiene- 2,4‬‬
‫‪H‬‬
‫) ‪(2‬‬
‫) ‪(1‬‬
‫) ‪H(2‬‬
‫‪(Z , Z) - Heptadiene - 2,4‬‬
‫‪H‬‬
‫ﻋﻨﺪﻣﺎ ﲢﺘﻮﻱ ﺍ‪‬ﻤﻮﻋﺎﺕ ﻋﻠﻰ ﺭﻭﺍﺑﻂ ﺛﻨﺎﺋﻴﺔ أﻭ ﺛﻼﺛﻴﺔ ﻓﺈﻥ ﺍﻟﺬﺭﺓ ﺍﳌﺘﺼﻠﺔ ﺑﺮﺍﺑﻄﺔ ﻣـﻀﺎﻋﻔﺔ‬
‫ﳝﻜﻦ ﺗﺼﻮﺭ ﺃ‪‬ﺎ ﻣﺘﺼﻠﺔ ﺑﺮﺍﺑﻄﺘﲔ ﺃﻭ ﺛﻼﺙ ﺭﻭﺍﺑﻂ ﺃﺣﺎﺩﻳﺔ ﻣـﻊ ﺫﺭﺓ ﻣـﻦ ﻧﻔـﺲ ﺍﻟﻨـﻮﻉ‪.‬‬
‫ﻓﻤﺠﻤﻮﻋﺔ ﺍﻟﻜﺮﺑﻮﻧﻴﻞ ﳝﻜﻦ ﺍﻋﺘﺒﺎﺭﻫﺎ ﻛﻤﺎ ﻟﻮ ﻛﺎﻧﺖ ﺫﺭﺓ ﻛﺮﺑـﻮﻥ ﻣﺘـﺼﻠﺔ ﺑﺎﻷﻛـﺴﺠﲔ‬
‫ﺑﻮﺍﺳﻄﺔ ﺭﺍﺑﻄﺘﲔ ﺃﺣﺎﺩﻳﺘﲔ‪ ,‬ﺃﻣﺎ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﻓﺘﻌﺎﻣﻞ ﻣﺜﻞ ﺭﺍﺑﻄﺘﲔ ﺃﺣـﺎﺩﻳﺘﲔ ﻣﺘـﺼﻠﺘﲔ‬
‫ﺑﺎﻟﻜﺮﺑﻮﻥ‪ ,‬ﻭﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻼﺛﻴﺔ ﺗﺘﻌﺎﻣﻞ ﻋﻠﻰ ﺃ‪‬ﺎ ﺛﻼﺙ ﺭﻭﺍﺑﻂ ﻣﺘﺼﻠﺔ ﺑﺎﻟﻜﺮﺑﻮﻥ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪C C‬‬
‫‪C‬‬
‫=‪C‬‬
‫‪=C‬‬
‫‪C‬‬
‫;‬
‫‪C C‬‬
‫‪N C‬‬
‫‪N‬‬
‫‪C‬‬
‫‪C‬‬
‫‪N‬‬
‫=‪C‬‬
‫‪=N‬‬
‫‪CH = CH‬‬
‫‪CH CH‬‬
‫‪C C‬‬
‫‪C=O‬‬
‫‪C O‬‬
‫;‬
‫‪O C‬‬
‫ﻧﻈﺎﻡ ﺃﻭﻟﻮﻳﺔ ﳎﺎﻣﻴﻊ ﺍﳌﺮﻛﺐ ‪ - 3‬ﺛﺎﻟﺜﻲ ﺑﻴﻮﺗﻴﻞ ‪ -1,3-‬ﺑﻴﻮﺗﺎﺩﻳﲔ ﺗﻜﻮﻥ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ‪:‬‬
‫)‪H (2‬‬
‫‪H‬‬
‫‪(2) C C‬‬
‫‪C‬‬
‫‪C C = C‬‬
‫)‪CH3 (1‬‬
‫‪H‬‬
‫‪CH2 =CH‬‬
‫‪C = C‬‬
‫‪CH3‬‬
‫‪(1) C C‬‬
‫‪(CH3)3C‬‬
‫‪C‬‬
‫‪(Z)-3 -tert Butyl -1,3-pentadiene‬‬
‫‪H‬‬
‫‪H‬‬
‫)‪C = CH2 (1‬‬
‫‪(2) CH‬‬
‫)‪C = CH2 (1‬‬
‫‪3‬‬
‫‪C=C‬‬
‫)‪CH2CH3 (2‬‬
‫‪(2) H‬‬
‫‪C=C‬‬
‫;‬
‫)‪CH3 (2‬‬
‫‪(1) OHC‬‬
‫‪(1) CH3‬‬
‫‪(E) -3 - Methyl -1,3 - pentadiene‬‬
‫‪(E) -3 - Ethyl -2 - methyl -2,4-pentadienal‬‬
‫‪H‬‬
‫)‪(1‬‬
‫‪(2) CH‬‬
‫=‪C‬‬
‫‪=N‬‬
‫‪3‬‬
‫‪C=C‬‬
‫)‪CH =CH2(2‬‬
‫)‪C = CH2 (2‬‬
‫;‬
‫‪(1) CH3CH2‬‬
‫‪(E) -2 -Venyl -3 - methyl-2 -pentenenitrile‬‬
‫‪(2) H‬‬
‫‪C=C‬‬
‫)‪= CH (1‬‬
‫=‪C‬‬
‫‪(1) CH3‬‬
‫‪(Z) -3 -Venyl -3 - penten-1 -yne‬‬
‫ﻫﻨﺎﻙ ﺭﻭﺍﺑﻂ ﺗﻮﻟﺪ ﺍﳉﺴﺎﺀﺓ ﲝﻴﺚ ﺗﺆﺩﻱ ﺇﱃ ﺗﻜﻮﻳﻦ ﺍﻳﺰﻭﻣﲑﺍﺕ ﻫﻨﺪﺳﻴﺔ ﳝﻜﻦ ﻓﺼﻠﻬﺎ ﻋـﻦ‬
‫ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﻛﻤﺎ ﻫﻮ ﺍﳊﺎﻝ ﰲ ﺍﻟﺮﺍﺑﻄﺔ ‪ C = N‬ﺍﻟﱵ ﺗﻮﺟﺪ ﰲ ﺍﳌﺮﻛﺒﺎﺕ ﻣﺜﻞ ﺍﻟﺴﻴﺘﻮﻛﺰﳝﺎﺕ‬
‫ﻭﺍﳍﻴﺪﺭﺍﺯﻭﻧﺎﺕ ﻭﺗﺄﺧﺬ ﺍﻟﺘﺴﻤﻴﺔ ﺳﲔ ‪ syn‬ﻣﺴﺎﻳﺮ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍ‪‬ﺎﻣﻴﻊ ﰲ ﺟﻬﺔ ﻭﺍﺣـﺪﺓ ﻣـﻦ‬
‫ﻣﺴﺘﻮﻯ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﻭﺗﺄﺧﺬ ﺍﻟﻜﻠﻤﺔ ﻣﻀﺎﺩ ‪ anti‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍ‪‬ﺎﻣﻴﻊ ﰲ ﺟﻬﺔ ﻣﺘﻌﺎﻛﺴﺔ ﻣـﻦ‬
‫ﻣﺴﺘﻮﻱ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ‪.‬‬
‫‪H ... O‬‬
‫‪H‬‬
‫‪CH3‬‬
‫‪COCH3‬‬
‫;‬
‫‪N‬‬
‫‪N=C‬‬
‫‪C=O‬‬
‫‪N‬‬
‫‪N=C‬‬
‫‪CH3‬‬
‫_ ‪Syn‬‬
‫‪Anti _ CH3O‬‬
‫‪..‬‬
‫‪(1) Ph‬‬
‫)‪OH (1‬‬
‫‪C=N‬‬
‫;‬
‫)‪OH (1‬‬
‫‪(2) CH3‬‬
‫‪(1) Ph‬‬
‫‪..‬‬
‫‪C=N‬‬
‫_ ‪Syn‬‬
‫‪Anti‬‬
‫‪(2) CH3‬‬
‫ﻛﻤﺎ ﺍﻧﻪ ﳝﻜﻦ ﻓﺼﻞ ﺍﻷﻳﺰﻭﻣﲑﻳﻦ ﺳﻴﺲ ﻭﺗﺮﺍﺗﺲ ﰲ ﺣﺎﻟﺔ ﺑﻌﺾ ﺍﳌﺮﻛﺒﺎﺕ ﺍﻟﱵ ﻻﺣﺘﻮﻱ ﻋﻠﻰ‬
‫ﺭﺍﺑﻄﺔ ﺛﻨﺎﺋﻴﺔ ﻣﺜﻞ ﺍﳊﺎﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪CH2Ph‬‬
‫‪Ar‬‬
‫‪N‬‬
‫‪C‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫;‬
‫‪S‬‬
‫‪Ar‬‬
‫‪C‬‬
‫‪N‬‬
‫‪CH2Ph‬‬
‫‪S‬‬
‫‪Trans‬‬
‫‪Cis‬‬
‫ﻷﻥ ﺍﻟﺮﻧﲔ ﻳﻌﻄﻲ ﺻﻴﻔﺔ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﻋﻠﻰ ﺍﻟﺮﺍﺑﻄﺔ ﺍﻟﻔﺮﺩﻳﺔ ﻭﺑﺬﻟﻚ ﻳﻌﻄﻞ ﺍﻟﺪﻭﺭﺍﻥ ﻭﺑﺎﻟﺘﺎﱄ‬
‫ﻓﺼﻞ ﺍﻷﻳﺰﻭﻣﲑﺍﺕ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ‪.‬‬
‫‪CH2Ph‬‬
‫‪..‬‬
‫‪N‬‬
‫‪Ar‬‬
‫‪C‬‬
‫‪CH3‬‬
‫‪CH2Ph‬‬
‫‪Ar‬‬
‫‪N‬‬
‫‪CH3‬‬
‫‪..‬‬
‫‪N‬‬
‫‪S‬‬
‫‪+‬‬
‫‪CH3‬‬
‫‪CH2Ph‬‬
‫‪CH3‬‬
‫‪C‬‬
‫‪S‬‬
‫‪C‬‬
‫‪S‬‬
‫‪Ar‬‬
‫‪+‬‬
‫‪N‬‬
‫‪-‬‬
‫‪Ar‬‬
‫‪CH2Ph‬‬
‫‪C‬‬
‫‪-‬‬
‫‪S‬‬
‫ﻛﻤﺎ ﺃﻥ ﻟﻠﻬﻴﺪﺭﺍﺯﻭﻥ ‪ Y‬ﺛﻼﺛﺔ ﺍﻳﺰﻭﻣﲑﺍﺕ ﻫﻨﺪﺳﻴﺔ ﰎ ﻓﺼﻠﻬﺎ ﻋﻦ ﺑﻌﻀﻬﺎ ﺍﻟـﺒﻌﺾ ﺑﻮﺍﺳـﻄﺔ‬
‫ﻋﻤﻮﺩ ﺍﻟﻔﺼﻞ ﻭﺍﻟﱵ ﺷﺨﺼﺖ ﺑﻮﺍﺳﻄﺔ ﺍﻷﺷﻌﺔ ﻓﻮﻕ ﺍﻟﺒﻨﻔﺴﺠﻴﺔ)‪ (UV‬ﻭﺍﻷﺷﻌﺔ ﲢﺖ ﺍﳊﻤﺮﺍﺀ‬
‫)‪ (IR‬ﻭﻛﺬﻟﻚ ﺍﻟﺮﻧﲔ ﺍﻟﻨﻮﻭﻱ ﺍﳌﻐﻨﺎﻃﻴﺴﻲ )‪.(NMR‬‬
‫‪CH3‬‬
‫‪CH3‬‬
‫‪NHN=C‬‬
‫‪C=NHN‬‬
‫‪X‬‬
‫=‪y‬‬
‫‪COOC2H5‬‬
‫‪g‬‬
‫‪H5C2OOC‬‬
‫‪g‬‬
‫‪H...O‬‬
‫‪COC2H5‬‬
‫‪O...H‬‬
‫‪N‬‬
‫‪N‬‬
‫‪X‬‬
‫‪H5C2OC‬‬
‫‪N=C‬‬
‫‪C=N‬‬
‫‪g‬‬
‫‪CH3‬‬
‫‪g‬‬
‫‪CH3‬‬
‫‪Syn - Syn‬‬
‫‪O...H‬‬
‫‪H‬‬
‫‪CH3‬‬
‫‪N‬‬
‫‪N‬‬
‫‪X‬‬
‫‪H5C2OC‬‬
‫‪N=C‬‬
‫‪C=N‬‬
‫‪g‬‬
‫‪C=O‬‬
‫‪g‬‬
‫‪H5C 2O‬‬
‫‪CH3‬‬
‫‪Syn - Anti‬‬
‫‪H‬‬
‫‪CH3‬‬
‫‪H‬‬
‫‪N‬‬
‫‪N‬‬
‫‪X‬‬
‫‪N=C‬‬
‫‪C=N‬‬
‫‪g‬‬
‫‪C=O‬‬
‫‪H5C 2O‬‬
‫‪CH3‬‬
‫‪g‬‬
‫‪Anti - Anti‬‬
‫‪O=C‬‬
‫‪OC 2H5‬‬