Genetics ppt 2

Beyond Mendel’s Laws
of Inheritance
AP Biology
2006-2007
Incomplete dominance
 Heterozygote shows an intermediate,
blended phenotype

example:
 RR = red flowers RR
 rr = white flowers WW
 Rr = pink flowers RW
 make 50% less color
AP Biology
RR
RW
WW
Incomplete dominance
P
X
true-breeding
red flowers
true-breeding
white flowers
100% pink flowers
F1
100%
generation
(hybrids)
self-pollinate
25%
red
F2
generation
AP Biology
50%
pink
25%
white
1:2:1
Codominance
 There are two or more alleles that are
dominant in a phenotype.
 Both alleles are expressed in
heterozygous condition.

AP Biology
Ex: Red – RR, white – WW, red and
white - RW
Multiple Alleles
 2 alleles affect the phenotype equally &
separately
not blended phenotype
 human ABO blood groups
 3 alleles

 IA, IB, i
 IA & IB alleles are co-dominant
 glycoprotein antigens on RBC
 IAIB = both antigens are produced
 i allele recessive to both
AP Biology
Polygenic inheritance
 Some phenotypes determined by
additive effects of 2 or more genes on a
single characteristic
phenotypes on a continuum
 human traits

 skin color
 height
 weight
 intelligence
 behaviors
AP Biology
Sex linked traits
1910 | 1933
 Genes are on sex chromosomes



as opposed to autosomal chromosomes
first discovered by T.H. Morgan at Columbia U.
Drosophila breeding
 good genetic subject
 prolific
 2 week generations
 4 pairs of chromosomes
 XX=female, XY=male
AP Biology
Discovery of sex linkage
P
F1
true-breeding
red-eye female
X
true-breeding
white-eye male
100%
red eye offspring
Huh!
Sex matters?!
generation
(hybrids)
F2
generation
AP Biology
100%
red-eye female
50% red-eye male
50% white eye male
Genetics of Sex
 In humans & other mammals, there are 2
sex chromosomes: X & Y

2 X chromosomes
 develop as a female: XX
 gene redundancy,
like autosomal chromosomes

an X & Y chromosome
X
Y
X
XX
XY
X
XX
XY
 develop as a male: XY
 no redundancy
AP Biology
50% female : 50% male
Morgan’s flies…
x
XR XR
Xr
XR
XR
AP Biology
XR Xr
XR Xr
x
XrY
XR Xr
Y
XRY
XRY
100% red eyes
XR
Xr
XRY
XR
Y
XR XR
XRY
XR Xr
X rY
100% red females
50% red males; 50% white males
Genes on sex chromosomes
 Y chromosome

few genes other than SRY
 sex-determining region
 master regulator for maleness
 turns on genes for production of male hormones
 X chromosome

traits other than sex determination
 mutations: (all are recessive)
 hemophilia
 Duchenne muscular dystrophy
 color-blindness
AP Biology
sex-linked recessive
Hemophilia
H Xh x X
HY
HH
XHh
XH
female / eggs
male / sperm
XH
XH
Y
XH XH
XH Y
XH Xh
Xh
XH
Xh
AP Biology
XH Xh
XhY
carrier
disease
XHY
Y
X-inactivation
 Female mammals inherit 2 X chromosomes

one X becomes inactivated during
embryonic development
 condenses into compact object = Barr body
 which X becomes Barr body is random
 patchwork trait = “mosaic”
patches of black
XH 
XH Xh
tricolor cats
can only be
AP Biology
female
Xh
patches of orange
Environmental effects
 Phenotype is controlled by
both environment & genes
Human skin color is influenced
by both genetics &
environmental conditions
Coat color in arctic
fox influenced by
heat sensitive alleles
Color of Hydrangea flowers
APinfluenced
Biology
is
by soil pH
Pedigree Analysis
 A pedigree is a family tree that describes

the interrelationships of parents and
children across generations
Inheritance patterns of particular traits can
be traced and described using pedigrees
AP Biology
Fig. 14-15b
1st generation
(grandparents)
2nd generation
(parents, aunts,
and uncles)
Ww
ww
ww
Ww ww ww Ww
Ww
Ww
ww
3rd generation
(two sisters)
WW
or
Ww
Widow’s peak
ww
No widow’s peak
(a) Is a widow’s peak a dominant or recessive trait?
AP Biology
Fig. 14-15c
1st generation
(grandparents)
Ff
2nd generation
(parents, aunts,
and uncles)
FF or Ff ff
Ff
ff
ff
Ff
Ff
Ff
ff
ff
FF
or
Ff
3rd generation
(two sisters)
Attached earlobe
Free earlobe
(b) Is an attached earlobe a dominant or recessive trait?
AP Biology