Analysis of time-stratified casecrossover studies in environmental epidemiology using Stata Aurelio Tobías Spanish Council for Scientific Research (CSIC), Barcelona, Spain Ben Armstrong and Antonio Gasparrini London School of Hygiene and Tropical Medicine, UK 2014 UK Stata Users Group meeting London, 12th September 2014 Background • The time stratified case crossover design is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes The case-crossover design • Proposed by Maclure (1991) to study transient effects on the risk of acute health events … compared to your usual routine? Have you made any unusual activity … Health event The case-crossover design • Proposed by Maclure (1991) to study transient effects on the risk of acute health events Exposed? Control period Exposed? Risk period Health event The case-crossover design • Proposed by Maclure (1991) to study transient effects on the risk of acute health events Exposed? Control period • Analysis likewise a matched case-control Exposed? Risk period Health event Control Exp. No Risk Exp. period No a c b d OR = b/c Application to environmental studies • Firstly adapted to air pollution studies – Philadelphia (Neas et al. 1999) and Barcelona (Sunyer et al. 2000) • comparing exposure levels for a given day (t) when health event occurs vs. levels before (t-7) and after (t+7) the health event • Allows to control for time-trend and seasonality by design, since compares exposure levels between same weekdays within each month of each year Time-stratified case-crossover (Figueiras et al. 2010) Option 1: conditional logistic regression • Dataset needs to be reshaped from time-series format to individual matched case-control by using the new command, • . mkcco vary, date(vardate) – – – – This also creates three new variables, case case days (=1) wn weight observations by n events on case day ccset set num. to match case-control days • Then, use Stata’s clogit command . use madrid, clear . list date y pm10 temp in 1/31, noobs clean date 01jan2003 02jan2003 03jan2003 04jan2003 05jan2003 06jan2003 07jan2003 08jan2003 09jan2003 10jan2003 11jan2003 12jan2003 13jan2003 14jan2003 15jan2003 16jan2003 17jan2003 18jan2003 19jan2003 20jan2003 21jan2003 22jan2003 23jan2003 24jan2003 25jan2003 26jan2003 27jan2003 28jan2003 29jan2003 30jan2003 31jan2003 y 64 56 73 69 71 68 63 85 67 80 65 95 60 76 77 75 76 75 74 79 73 72 72 74 59 77 64 65 74 77 55 pm10 14 12 16 14 17 9 19 13 13 22 23 17 45 60 72 54 65 43 12 19 16 21 25 46 42 26 22 41 18 17 17 temp 9.6 11 9.8 8.8 4.3 7 3 6.8 4.6 2.7 1 .85 .5 .45 1.3 2.6 2 .8 6.3 5.8 8 6.7 7 6.2 8.1 10 15 9.7 5.7 4.8 2.3 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 . generate dow = dow(date) . list date y pm10 temp in 1/31 if dow==1, noobs clean date 06jan2003 13jan2003 20jan2003 27jan2003 y 68 60 79 64 pm10 9 45 19 22 temp 7 .5 5.8 15 . mkcco y, date(date) Dataset reshaped from 1096 to 5480 obs. (1096 case days and 4384 control days). New variables case, wn and ccset have been added to the resaphed dataset. Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 . list date y pm10 temp case ccset wn in 1/36 if dow==1, noobs clean date 06jan2003 13jan2003 20jan2003 27jan2003 ... y 68 60 79 64 pm10 9 45 19 22 temp 7 .5 5.8 14.8 case 1 0 0 0 ccset 2003021 2003021 2003021 2003021 wn 68 68 68 68 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ... date 06jan2003 13jan2003 20jan2003 27jan2003 y 68 60 79 64 pm10 9 45 19 22 temp 7 .5 5.8 14.8 case 0 1 0 0 ccset 2003022 2003022 2003022 2003022 wn 60 60 60 60 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ... date 06jan2003 13jan2003 20jan2003 27jan2003 y 68 60 79 64 pm10 9 45 19 22 temp 7 .5 5.8 14.8 case 0 0 1 0 ccset 2003023 2003023 2003023 2003023 wn 79 79 79 79 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ... date 06jan2003 13jan2003 20jan2003 27jan2003 y 68 60 79 64 pm10 9 45 19 22 temp 7 .5 5.8 14.8 case 0 0 0 1 ccset 2003024 2003024 2003024 2003024 wn 64 64 64 64 . clogit case pm10 [w=wn], group(ccset) (frequency weights assumed) ... Conditional (fixed-effects) logistic regression Log likelihood = -98913.41 Number of obs LR chi2(1) Prob > chi2 Pseudo R2 = = = = 295025 8.39 0.0038 0.0000 -----------------------------------------------------------------------------case | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------pm10 | .0007406 .0002552 2.90 0.004 .0002404 .0012408 ------------------------------------------------------------------------------ Option 1: conditional logistic regression • Advantage – Similar approach to a matched case-control study, being familiar to the epidemiologist • Limitations – Unfriendly data management – Large (huge) data-sets at individual level – Slow convergence when fitting interaction terms for individual factors (sex, age) – Cannot account for overdispersion and residual autocorrelation Option 2: Poisson regression • Lu and Zeger (2007) – “ … the time-stratified case-crossover design leads to the same estimate as obtained from a Poisson regression with dummy variables indicating the strata” • Strata defined by the 3-way interaction between year, month and day of week • Either poisson or glm (jointly with the scale option) Stata’s commands can be used . . . . use madrid, clear generate yy = year(date) generate mm = month(date) generate dow = dow(date) . poisson y pm10 i.yy##i.mm#i.dow ... Poisson regression Log likelihood = -3787.589 Number of obs LR chi2(252) Prob > chi2 Pseudo R2 = = = = 1096 1374.12 0.0000 0.1535 -----------------------------------------------------------------------------y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------pm10 | .0007406 .0002552 2.90 0.004 .0002404 .0012408 | ... 252 parameters! | _cons | 4.35927 .0563535 77.36 0.000 4.248819 4.469721 ------------------------------------------------------------------------------ . glm y pm10 i.yy##i.mm#i.dow, family(poisson) link(log) scale(x2) ... Generalized linear models Optimization : ML Deviance Pearson = = 1069.73306 1065.616046 Variance function: V(u) = u Link function : g(u) = ln(u) No. of obs Residual df Scale parameter (1/df) Deviance (1/df) Pearson = = = = = 1096 843 1 1.26896 1.264076 [Poisson] [Log] AIC = 7.373338 Log likelihood = -3787.588997 BIC = -4830.78 -----------------------------------------------------------------------------| OIM y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------pm10 | .0007406 .0002869 2.58 0.010 .0001782 .001303 | ... | _cons | 4.35927 .0633589 68.80 0.000 4.235088 4.483451 -----------------------------------------------------------------------------(Standard errors scaled using square root of Pearson X2-based dispersion.) Option 2: Poisson regression • Advantages – Avoids reshape of dataset keeping original time-series format – Can account for overdispersion and residual autocorrelation • Limitations – Large number of interaction parameters, slowing the convergence time (even making difficult it with missing data) – Even slower when fitting interaction terms for individual factors (sex, age) Option 3: Conditional Poisson regression • Armstrong and Gasparrini (ISEE 2011) – “ … Poisson models with large numbers of indicator variables can alternatively be fit with conditional Poisson models, conditioning on numbers of events in the time stratum” – Firstly proposed by Farrington (1995) for the self-controlled case-series design for vaccine safety studies • Strata defined by grouping same weekday within each month of each year, and then use Stata’s xtpoisson command jointly with the fe option • But overdispersion needs to accounted for with the new xtpois_ovdp command . egen set = group(yy mm dow) . xtset set date ... . xtpoisson y pm10, fe ... Conditional fixed-effects Poisson regression Group variable: set Log likelihood = -2854.4979 Number of obs Number of groups = = 1096 252 Obs per group: min = avg = max = 4 4.3 5 Wald chi2(1) Prob > chi2 = = 8.42 0.0037 -----------------------------------------------------------------------------y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------pm10 | .0007406 .0002552 2.90 0.004 .0002404 .0012408 -----------------------------------------------------------------------------. xtpois_ovdp Estimate and standard errors corrected for over-dipersion df: 843 ; pearson x2: 1065.6 ; dispersion: 1.26 -----------------------------------------------------------------------------y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------pm10 | .0007406 .0002869 2.58 0.010 .0001782 .001303 ------------------------------------------------------------------------------ CPU time • My example (3 years data, 60 events/day) – clogit – poisson – xtpoisson 0.181 sec. 2.111 sec. 0.066 sec. Option 3: Conditional Poisson regression • Advantages – Avoids reshape of dataset keeping original time-series format – Can account for overdispersion and residual autocorrelation – Easy fit of interaction terms for individual factors (sex, age) with faster convergence • Limitations –? Summary • Case-crossover studies can easily be analysed using Stata 1) Conditional logistic regression requires unfriendly data management, and large (huge) data-sets at individual level 2) Poisson, 3-way interaction, regression requires to fit large number of interaction parameters, making it difficult convergence 3) Conditional Poisson seems to solve both Thanks for your attention! Thanks for your attention!
© Copyright 2025