Lecture 11 First-order Circuits (1) Hung-yi Lee Dynamic Circuits Capacitor, Inductor (Chapter 5) Time Domain (Chapter 9) Frequency Domain (Chapter 6,7) Abstract S-Domain (Chapter 11,13) Textbook • First-Order Circuits • Chapter 5.3, 9.1 First-Order Circuits • Containing only one capacitor or inductor The networks excluding capacitor or inductor only contains sources and resistors. Can always be simplified by Thevenin or Norton Theorem First-Order Circuits RC: i sc RL: i sc First Order Circuits voc t , isc t (this lecture) voc and isc should be dynamic … t t0 … t t0 … t1 i sc t2 t … … t0 t Unit Step Function Perspective • Differential Equation • Superposition • State Perspective 1: Differential Equation Zero-Input Response - RC v Vou t t0 … t0 t Zero-Input Response - RC Find vc(t) and ic(t) t t0 Capacitor is open circuit ic t 0 vc t Vo Zero-Input Response - RC Find vc(t) and ic(t) t t0 Capacitor is open circuit ic t 0 vc t 0 Zero-Input Response - RC Find vc(t) and ic(t) t t0 ? t t0 t t0 ? t t0 Zero-Input Response - RC t t0 vC (t0 ) V0 vC (t0 ) V0 ic(t0) is unknown Voltage on the capacitor should be continuous Zero-Input Response - RC t t0 vC (t0 ) V0 vC (t0 ) V0 ic(t0) is unknown dvC (t ) RC vC (t ) 0 dt t Assume vC (t ) Ae t t RCAe Ae 0 dvC (t ) iC (t ) C dt RC 1 0 1 RC Zero-Input Response - RC vC (t ) Ae Ae Ae 1 t0 RC 1 RC vC (t0 ) V0 t 1 t RC A V0e V0 vC (t ) V0e 1 1 t0 t RC RC e V0e vC (t0 ) V0 1 t0 RC 1 t t 0 RC 1 t t 0 RC dvC (t ) de iC (t ) C CVo dt dt Vo RC t t0 e R 1 Zero-Input Response - RC vC (t ) V0e 1 t t 0 RC Vo iC (t ) e R 1 t t 0 RC Zero-Input Response - RC vC (t ) V0e … RC t t0 vC (t ) V0e Vo dvC (t ) Vo e dt vC (t ) Vo Vo Vo 1 t t 0 RC 1 t t 0 1 t t 0 dvC (t0 ) Vo dt Vo Zero-Input Response - RL i I ou t t0 i … t0 t Zero-Input Response - RL iL (t ) I 0 e I0 R t t 0 L vC (t ) RI 0e vL (t ) iL (t ) - RI 0 R t t 0 L Zero-Input Response … t0 vC (t ) V0e 1 t t 0 RC R t t 0 L iL (t ) I 0 e RC L R y (t ) Y0 e Voltage of C, Current of L t -t 0 Voltage, Current How fast? t Step Response - RC v Vou t t0 … t0 t t t0 Step Response - RC • Solved by differential equation t t0 vc t 0 t t0 vc t Vo t t0 Ric t vc t Vo 0 vc t 0 vt Vou t t0 0 vc t 0 dvc t RC vc t Vo dt Step Response - RC dvc t v t 0 RC v t V dt c vc t v N t vF t o c 0 vN(t) is general solution vF(t) is special solution dvc t vc t 0 vN(t) is the solution of RC dt vN (t ) Ae dvc t vc t Vo vF(t) is the solution of RC dt vF t Vo t RC Step Response - RC dvc t v t 0 RC v t V c dt vc t v N t vF t vc t Ae t RC c o Vo vc t V0 1 e 0 vN (t ) Ae Ae t0 RC 1 t t 0 RC t RC vF t Vo Vo 0 A Vo e t0 RC … Step Response t t0 1 t t 0 vc t V0 1 e RC R t t 0 iL t I 0 1 e L RC L R t -t 0 y (t ) Y0 1 e Voltage of C, Current of L Voltage, Current How fast? Step Response t -t 0 y (t ) Y0 1 e Y0 Y0 … t0 t Step Response … t t0 t -t 0 y (t ) Y0 1 e Y0 Y0 Rise time Y0 10% time 90% time Step Response + Initial Condition t t0 0 vc t 0 V vc t 0 x Step Response - RC dvc t RC v t V v t V c dt vc t v N t vF t vc t Ae Ae t0 RC t RC c o vN (t ) Ae Vo x t RC vF t Vo vc t Vx V0 e Vo Vx A Vx Vo e 0 t0 RC 1 t t 0 RC V0 Perspective 2: Superposition Step Response • Solved by Superposition vt Vou t t0 vC (t ) V0e 1 t t 0 RC vt Vou t t0 vC (t ) ? Step Response … t0 t v 2 t = … … t0 v1 t Vo Vou t t0 t - Suppress v1, find vc2(t) Suppress v2, find vc1(t) … t0 t vc t vc1 t vc 2 t Step Response vt Vou t t0 vC (t ) V0e vC 2 (t ) V0e v 2 t Vou t t0 1 t t 0 1 t t 0 vC1 (t ) V0 vC (t ) vC1 (t ) vC 2 (t ) v1 t Vo 1 t t 0 V0 1 e Pulse Response vt Vo dvc t RC vc t vt dt Solved by Superposition Pulse Response = 0 t0 1 t vC1 (t ) V 1 e t 0 0 vt Vo vC1 (t ) … 0 D - 0 tD t D vC 2 (t ) V 1 e t D 0 vC 2 (t ) Vo Vo 0 … D Pulse Response vC (t ) vC1 (t ) vC 2 (t ) 0 tD 0 t0 t D 1 vC1 (t ) V 1 e t t 0 vC 2 (t ) V 1 e t D 0 0 vC (t ) D V0 V0 1 e D t V0 e 1e Pulse Response If D vC (t ) V0 e x 1 x (If x is small) D V0 V0 1 e D D V0 e t D t V0 e 1e Step Response + Initial Condition V vc t vc t Vx V0 e 1 t t 0 RC 0 V0 Violate Superposition? x Step Response + Initial Condition vc t0 Vx The initial condition is automatically fulfilled. Vx Do not have to consider the initial condition anymore Step Response + Initial Condition Vx Vx Zero-Input Response! Step Response (without initial condition)! 1 t t 0 RC v t V 1 e c2 0 vc1 t Vx e 1 1 t t 0 t t 0 vc t vc1 t vc 2 t Vx e RC V0 1 e RC 1 t t 0 RC Step Response + Initial Condition Differential Equation Superposition vc t vc t Vx V0 e General solution 1 t t 0 RC V0 Special solution The initial condition is considered in the general solution term. Vx e 1 t t 0 RC Zero-input Response V0 1 e 1 t t 0 RC Step Response The initial condition is automatically fulfilled. Perspective 3: State State • The capacitor voltages and inductor currents constitute the state variables of any circuit. (P410) If the circuit does not have any capacitor or inductor The currents or voltages at time t do not depend on their values not at t. Why? v(t ) Rit State • The capacitor voltages and inductor currents constitute the state variables of any circuit. (P410) With capacitor or inductor V0 vt 0 t t0 t t0 You can not explain the current or voltage at present unless considering the past. State • The capacitor voltages and inductor currents constitute the state variables of any circuit. (P410) 1 t dv(t ) v(t ) i d i (t ) C C dt 1 t 1 t vt vt0 i d vt1 i d …… C t0 C t1 If we know the voltage before at t0 We do not care about the current before t0 Capacitor voltages are States State • The capacitor voltages and inductor currents constitute the state variables of any circuit. (P410) 1 t vt vt0 i d C t0 State at t0 Source after t0 vt vstate t vinput t vc t0 Vx State • The capacitor voltages and inductor currents constitute the state variables of any circuit. (P410) vc (t ) vstate t vinput t The response after t0 vc t Vx e 1 t t 0 RC From state at t0 (Ignore input) 1 t t 0 V0 1 e RC From Input after t0 (Ignore state) Response y(t): voltage of capacitor or current of inductor y(t) = general solution + special solution = = = natural response + forced response = state response (zero input) + input response (zero state) Zero-Input Response … t0 t vc (t ) vstate t vinput t Considering the circuit from t0: Ignore everything before t0 State: vc(t0)=V0 Lead to vstate t No input after t0 vinput t 0 Zero-Input Response vc (t ) vstate t vinput t vinput t 0 State: vc(t0)=V0 vstate (t ) V0e vc t vstate (t ) V0e 1 t t 0 1 t t 0 Zero-Input Response v Vou t t0 … t0 t vc (t ) vstate t vinput t Considering the circuit from t0-D: State: vc(t0-D)=V0 Input after t0-D t0 D t0 t Zero-Input Response vc (t ) vstate t vinput t State: vc(t0-D)=V0 vstate (t ) V0e Input after t0-D vinput (t ) 1 t t 0 D t t0 D t0 t0 D t0 1 t t D D t t 0 D V0 e 1e V0 1 e 0 Example 9.4 t0 0 t 1 t 1 6k 12V 4k 12V Example 9.4 t0 v0 0 v 0 0 v 0 0 Example 9.4 v 0 0 v 1 9.73 0 t 1 State response: v0 0 No state response Input response: voc 12V vt V0 1 e t t0 t 12V 0 . 6 121 e 6k Example 9.4 v 0 0 v 1 9.73 0 t 1 6k 12V State response is zero Example 9.4 v 0 0 v 1 9.73 t 1 State response: vt Vx e t t 0 4k Input response: t t 0 vt V0 1 e 12V Example 9.4 v 0 0 v 1 9.73 t 1 State response: vt 9.73e 4k t 1 0.4 Input response: t 1 vt 121 e 0.4 12 21.73e t 1 0.4 12V Example 9.4 t 0 . 6 121 e 12 21.73e dvt vt it 100F dt 24k t 1 0.4 Application: Touchscreen Resistive Touchscreen 電阻式觸控螢幕 http://www.analog.com/library/analogdialogue/archives/44-02/touch_screen.html Capacitive Touchscreen 電容式觸控螢幕 Before Touching Finger is Touching http://www.eettaiwan.com/ART_8800583600_480702_TA_bc13e6c4.HTM Homework • 9.14 • 9.16 Homework - Stability • The first-order circuit shown below is at steady state before the switch closes at t=0. This circuit contains a dependent source and so may be unstable. Find the capacitor voltage, v(t), for t>0. Homework - Stability • The gain of the dependent source below is B. What restrictions must be placed on the gain to ensure that the circuit is stable? Design this circuit to have a time constant of +20ms. Thank you! Homework • 9.14 • 9.16 t 2D 0t D vL t 10e tD vL t 3.93e vC D 8.65 vC 2D 1.17 vC 3D 8.81 t D 2D Stability • The first-order circuit shown below is at steady state before the switch closes at t=0. This circuit contains a dependent source and so may be unstable. Find the capacitor voltage, v(t), for t>0. 0.2m 0.1m vt 24 12e 0.4m 0.1m 1V t 20 Stability • The gain of the dependent source below is B. What restrictions must be placed on the gain to ensure that the circuit is stable? Design this circuit to have a time constant of +20ms. B 3/ 2 B 1 Acknowledgement • 感謝 莊佾霖(b02) • 指出投影片中 Equation 的錯誤
© Copyright 2025