Ken Youssefi Mechanical Engineering Dept, SJSU 1 Complex Numbers and Polar Notation x2 + 1 = 0, x2 + x + 1 = 0, Euler (1777), i = √ -1 i2 = -1 x=? OA′ = - OA OA′ = i2 OA O A′ A i2 represents 180o rotation of a vector i represents 90o rotation of a vector r = x + iy Argand Diagram x = rcos(θ) iy y = rsin(θ) Imaginary axis P x eiθ = cos(θ) + i sin(θ), Real axis Ken Youssefi imaginary part real part Euler’s Formula r θ r = rcos(θ) + i rsin(θ) e-iθ = cos(θ) - i sin(θ) r = r eiθ Mechanical Engineering Dept, SJSU 2 Closed Loop Vector Equation – Complex Polar Notation B r3 θ3 A r2 + r3 = r1 + r4 4 r2 iθ2 r2 e + iθ3 r3 e iθ1 = r1 e + iθ4 r4 e 3 r4 2 θ4 θ2 θ1 = 0 r1 O2 O4 Positive sign convention - all angles are measured with respect to the horizontal line in counterclockwise direction. θ4 A r2 + r3 + r4 + r1 = 0 r2eiθ2 + r3eiθ3 + r4eiθ4 + r1eiθ1 = 0 3 r3 B θ3 4 r2 r4 2 θ2 Ken Youssefi O2 Mechanical Engineering Dept, SJSU r1 θ1 = 180 O4 3 Rotational Operator & Stretch Ratio iy Pj Φj θ1 θj P1 x r1 = r1eiθ1 rj = rjeiθj θj = θ1 + Φj rj = rj (r1 / r1 ) ei(θ1 + Φj) rj = (rj / r1) r1 eiθ1 eiΦj rj = r1 ρ eiΦj Stretch ratio Ken Youssefi Rotational operator Mechanical Engineering Dept, SJSU 4 Analytical Synthesis – Standard Dyad Form Left side of the mechanism 4 Bar mechanism P A r′3 r″3 B Pj r′3 eiαj αj r3 r2 r4 4 r2 eiβj O4 O2 P1 Parallel A1 Aj 2 Left side δj 3 Right side βj r′3 2 r2 O2 Closed loop vector equation – complex polar notation Design the left side of the 4 bar → r2 & r′3 Design the right side of the 4 bar → r4 & r″3 r2 + r′3 + δj = r2 eiβj + r′3 eiαj Standard Dyad form r2 (eiβj – 1) + r′3 (eiαj – 1) = δj Ken Youssefi Mechanical Engineering Dept, SJSU 5 Analytical Synthesis – Standard Dyad Form Apply the same procedure to obtain the Dyad equation for the right side of the four bar mechanism. P r″3 r4 Rotation of link 4, Standard Dyad form for the right side of the mechanism B r4 (eigj – 1) + r″3 (eiαj – 1) = δj 4 g g → rotation of link 4 α → rotation of link 3 O4 Standard Dyad form for the left side of the mechanism r2 (eiβj – 1) + r′3 (eiαj – 1) = δj β → rotation of link 2 Ken Youssefi Mechanical Engineering Dept, SJSU α → rotation of link 3 6 Analytical Synthesis Two Position Motion & Path Generation Mechanisms Left side of the mechanism P2 δ2 r′3 eiα2 α2 P1 Parallel A1 A2 r2 eiβ2 β2 2 r2 O2 r′3 Dyad equation for the left side of the mechanism. One vector equation or two scalar equations r2 (eiβ2 – 1) + r′3 (eiα2 – 1) = δ2 Motion generation mechanism, the orientation of link 3 is important (angle alpha) 1. Draw the two desired positions accurately. 2. Measure the angle α from the drawing, α2 3. Measure the length and angle of vector δ2 There are 5 unknowns; r2, r′3 and angle β2 and only two scalar equations (Dyad). Select three unknowns and solve the equations for the other two unknowns Given; α2 and δ2 Two position motion gen. Mech. Select; β2 and r′3 Ken Youssefi Mechanical Engineering Dept, SJSU Solve for r2 Three sets of infinite solution 7 Analytical Synthesis Two Position Motion & Path Generation Mechanisms Apply the same procedure for the right side of the 4-bar mechanism r4 (eigj – 1) + r″3 (eiαj – 1) = δj Two position motion gen. Mech. Given; α2 and δ2 Select;, g2 , r″3 Solve for r4 Path Generation Mechanism (left side of the mechanism) Two position path gen. Mech. Ken Youssefi Given; β2 and δ2 Select; α2 and r′3 Mechanical Engineering Dept, SJSU Solve for r2 Three sets of infinite solution 8 Analytical Synthesis Three Position Motion & Path Generation Mechanisms P2 r′3 e P3 r′3 e iα3 δ2 α2 δ3 A2 P1 Parallel A1 α3 β3 β2 r2 eiβ2 r′3 2 r2 A3 r2 eiβ3 Ken Youssefi iα2 O2 Mechanical Engineering Dept, SJSU 9 Analytical Synthesis Three Position Motion & Path Generation Mechanisms Three position motion gen. mech. r2 (eiβ2 – 1) + r′3 (eiα2 – 1) = δ2 Dyad equations r2 (eiβ3 – 1) + r′3 (eiα3 – 1) = δ3 4 scalar equations 6 unknowns; r2 2 free choices Three position motion gen. Mech. , r′3 , β 2 and β3 Given; α2, α3, δ2, and δ3 Select; β2 and β3 Solve for r2 and r′3 Two sets of infinite solution Ken Youssefi Mechanical Engineering Dept, SJSU 10 Analytical Synthesis Four position motion generation mechanism r2 (eiβ2 – 1) + r′3 (eiα2 – 1) = δ2 Dyad equations r2 (e iβ3 – 1) + r′3 (e iα3 – 1) = δ3 Non-linear equations r2 (eiβ4 – 1) + r′3 (eiα4 – 1) = δ4 6 scalar equations 7 unknowns; r2 1 free choices , r′3 , β 2 , β3 and β4 Given; α2, α3, α4 δ2, δ3 and δ4 Four position motion gen. Mech. Select; one input angle, β2 or β3 or β4 Solve for r2 and r′3 One set of infinite solution Ken Youssefi Mechanical Engineering Dept, SJSU 11 Analytical Synthesis Five position motion generation mechanism r2 (eiβ2 – 1) + r′3 (eiα2 – 1) = δ2 Dyad equations r2 (e iβ3 – 1) + r′3 (e iα3 – 1) = δ3 Non-linear equations r2 (eiβ4 – 1) + r′3 (eiα4 – 1) = δ4 r2 (eiβ5 – 1) + r′3 (eiα5 – 1) = δ5 8 scalar equations 8 unknowns; r2 0 free choice , r′3 , β 2 , β3 , β4 and β5 Given; α2, α3, α4, α5, δ2, δ3, δ4, and δ5 Four position motion gen. Mech. Select; 0 choice Solve for r2 and r′3 Unique solution, not desirable Ken Youssefi Mechanical Engineering Dept, SJSU 12 Analytical Synthesis –Function Generation Mechanism Freudenstein’s method B r3 r1 + r2 + r3 = r4 θ3 A r1eiθ1 + r2eiθ2 + r3eiθ3 = r4eiθ4 3 r4 r2 θ4 θ2 Euler equation eiθ = cos(θ) + i sin(θ) O2 r1 O4 Real part of the equation r1 cos(θ1) + r2 cos(θ2) + r3 cos(θ3) = r4 cos(θ4) Imaginary part of the equation r1 sin(θ1) + r2 sin(θ2) + r3 sin(θ3) = r4 sin(θ4) Ken Youssefi Mechanical Engineering Dept, SJSU 13 Analytical Synthesis –Function Generation Mechanism θ1 = 180 – r1 + r2 cos(θ2) + r3 cos(θ3) – r4 cos(θ4) = 0 r2 sin(θ2) + r3 sin(θ3) – r4 sin(θ4) = 0 [r3 cos(θ3)]2 = [r1 – r2 cos(θ2) + r4 cos(θ4)]2 [r3 sin(θ3)]2 = [– r2 sin(θ2) + r4 sin(θ4)]2 Add the two equations r32 = [– r2 sin(θ2) + r4 sin(θ4)]2 + [r1 – r2 cos(θ2) + r4 cos(θ4)]2 Expand and simplify r32 = (r1)2 + (r2)2 + (r4)2 – 2r1 r2 cos(θ2) + 2r1 r4 cos(θ4) – 2r2 r4 cos(θ2– θ4 ) Ken Youssefi Mechanical Engineering Dept, SJSU 14 Analytical Synthesis –Function Generation Mechanism r32 = (r1)2 + (r2)2 + (r4)2 – 2r1 r2 cos(θ2) + 2r1 r4 cos(θ4) – 2r2 r4 cos(θ2 – θ4) Divide the above equation by 2r2 r4 r1 r1 cos(θ4) + cos(θ2) – r2 r4 Define r1 K1 = r4 (r3)2 – (r1)2 – (r2)2 – (r4)2 r1 K2 = – r2 = – cos(θ2 – θ4) 2r2 r4 K3 = (r3)2 – (r1)2 – (r2)2 – (r4)2 2r2 r4 K1cos(θ2) + K2 cos(θ4) + K3 = – cos(θ2 – θ4) Freudenstein’s equation Ken Youssefi Mechanical Engineering Dept, SJSU 15 Example – Continuous Function Synthesize a four bar mechanism to generate a function y = log x in the interval 1 x 10. The input crank length should be 50 mm. Select φ1 Input link (crank) start angle = 45o Precision point A5 r2 φ5 Input link (crank) end angle = 105o ψ1 output link (link 4) start angle = 135o ψ5 output link (link 4) end angle = 225o r3 3 A1 B1 r4 B5 ψ5 φ5 ψ1 φ1 O2 r1 O4 Determine the precision points Use Chebyshev spacing and three precision points sj = ½ (so + sn+1) - ½ (sn+1 – so) cos[(2j - 1)π/2n] so = start point = 1 sn+1 = end point = 10 j = precision point, n = total number of precision points Ken Youssefi Mechanical Engineering Dept, SJSU 16 Example – Continuous Function sj = ½ (so + sn+1) - ½ (sn+1 – so) cos[(2j - 1)π/2n] x1 = ½ (1 + 10) – ½ (10 – 1) cos(π/6) = 1.6029 x2 = ½ (1 + 10) – ½ (10 – 1) cos(3π/6) = 5.50 x3 = ½ (1+ 10) – ½ (10 – 1) cos(5π/6) = 9.3971 Corresponding function values are: y1 = log x1 = log (1.6029) = .2049 y2 = log x2 = log (5.5) = .7404 y3 = log x3 = log (9.3971) = .9730 Ken Youssefi Mechanical Engineering Dept, SJSU 17 Example – Continuous Function Assume linear relationship between φ (input angle) and x, and between (output angle) and y. Where a, b, c and d are constants. φ = a(x) + b, 45 = a(1) + b 105 = a(10) + b = c(y) + d, 135 = C(0) + d 225 = C(1) + d Boundary condition; x = 1, φ = 45 and x = 10, φ = 105o φ = (20/3)(x) + 115/3 Boundary condition; and y = log(1) = 0, = 135 y = log(10) = 1, = 225o = 90(y) + 135 φ1 Input link (crank) start angle = 45o φ5 Input link (crank) end angle = 105o Ken Youssefi ψ1 output link (link 4) start angle = 135o ψ5 output link Mechanical Engineering Dept, SJSU (link 4) end angle = 225o 18 Example – Continuous Function y1 = log x1 = log (1.6029) = .2049 φ = 20/3(x) + 115/3 y2 = log x2 = log (5.5) = .7404 = 90(y) + 135 y3 = log x3 = log (9.3971) = .9730 Start Precision points End Ken Youssefi pts x y 1 2 3 4 1.00 1.6029 5.50 9.3971 45.00 49.019 75.0 100.98 0.00 .2049 .7404 .9730 135.00 153.44 201.64 222.57 5 10.00 135.00 1.00 225.00 Mechanical Engineering Dept, SJSU 19 Example – Continuous Function Freudenstein equation K1cos(φ1) + K2 cos(ψ1) + K3 = – cos(φ1 – ψ1) K1cos(φ2) + K2 cos(ψ2) + K3 = – cos(φ2 – ψ2) K1cos(φ3) + K2 cos(ψ3) + K3 = – cos(φ3 – ψ3) pts x y 1 1.00 45.00 0.00 135.00 2 1.6029 49.019 .2049 153.44 3 5.50 75.0 .7404 201.64 4 9.3971 100.98 .9730 222.57 5 10.00 135.00 1.00 225.00 K1cos (49.019) + K2 cos (153.44) + K3 = – cos (49.019 – 153.44) K1cos (75) + K2 cos (201.64) + K3 = – cos (75 – 201.64) K1cos (100.98) + K2 cos (222.57) + K3 = – cos (100.98 – 222.57) Ken Youssefi Solve for K1, K2, and K3 Mechanical Engineering Dept, SJSU 20
© Copyright 2024