What do the numbers mean?

DA Form 5701-60-R
Whatdo the numbersmean?
Thishandouthas beencompiledfromprevioussourcesand verifiedto be correctas of
January27,2O1O
by CW3JoshuaMeyers,FSXXIInstructor
Pilot,E Co 1-212Avn,Ft. Rucker,
AL. The information
is currentIAWPerformance
PlanningCardDA Form5701-60-ROCT2007;
TC 1-237Oct2007appendixE; TM 1-1520-237-105
dated25 September2009;
and FM 3-04.203datedMay 2007.
The purposeof thishandoutis to helpaviatorsbetterunderstand
whatthe entrieson the DA
Form5701-60-R
meanand howto incorporate
themintowhatwe do as pilots.
The secondpageof thishandoutshowsDA Form5701-60-R
and hasnumbersfor each
locationiblock
thatdirectlycorrespond
to howtheyare listedin theATM,Task1010Preparea
Performance
PlanningCard.Eachsubjectareain the handoutis numbered
corresponding
to
the ATMandthe PPCshownon the nextpage.
DA FORM5701.60-R
The purposeof the DA Form5701-60-R
is to givethe pilotsa dynamictoolto enhancemission
accomplishment
in determining
the maximumaircraftperformance
for powermanagement
in
anygivenmissionscenario.
Thedatapresented
in the performance
chartsare primarily
derived
for a cleanUH-60Aandare basedon US Armytestdata.Thecleanconfiguration
assumesall
doorsandwindowsare closedwiththefollowing
externalconfiguration:
1.
2.
3.
4.
5.
Fixedprovisions
for the ExternalStoresSupportSystem(ESSS)
Mainandtailrotorde-icesystem
Mountingbracketsfor infrared(lR)jammerandchaffdispenser
HoverInfraredSuppressor
System(HIRSS)withbafflesinstalled
Includes
wirestrikeprotection
systemsinstalled
Thedatapresented
in the highdragchartsare primarily
derivedfor a UH-60Aand basedon US
Armytestdata.The highdragconfiguration
assumesall doorsandwindowsare closedwiththe
followingexternalconfiguration
:
1. "EsSs rnstalteci
2. Two23O-gallon
tanksmountedon the outboardpylons
3. Inboardverticalpylonsempty
4. lR jammerandchaffdispenser
installed
5. HoverlnfraredSuppressor
System(HIRSS)withbafflesinstalled
6. Mainandtailrotordeiceandwirestrikeprotection
systemsinstalled
PTANNINGCARD
H-6O PERFORMAf{CE
For use of this form, see TC 1-237; the proponent agencY is TRADOC'
DEPARTIJRE
A I R C F A F TG W T : ( 3
STORESWEIGHT:
Z E R OFIJEL WEIGFIT:
t4
sc/
fr FAT:( 2
ftl
oc
i:rilij
;ridiiih
il-r ,i'ii#i
&,{g
! .;: . l: i t. 'j;r' 'r.,j li
i-;.t;ar
fi',#[
,ii1..*f;!.i,i 4,sr$:'i
Ib
5
FIJELWEIGHT:
L
FA:
tb
( q
lb
tb
EIE: ( 6
7 )-
6
.4TF:
7
TCIFO[.'EFATIO
8
MAX TOROUEAVAITABLE
ilo
9 )tu
M A X A L I O W A B L EG W T O G E JI G E
10
GO.I[!IO
GO TCIROUEOGE/IGE
,a?-
8 ) 9 / o
:lo
9 )tu
L0
94
T2
q6
LT
M A X H O V E f lH E I G H TI G E
ETF:
Jt
PREDICTED
HOVEHTOROUE
g/o
it
13
MIN SE AIfrSPEED- IAS- WO,,WSTOHE
13
kts
l{ts
REIVIARKS:
E M E H5 E I A 3 :
CRUISE
PA:( 1)tt
lrnt,
2
o{'
MAX,AMGI-E:
5
MAX TORIXUEAVAILAtsI.E
3
M l l { ; I \ I A X- l A $
CRUISETOROUEJ CI]NT TOFOUEAt/AILA8LI
x5
It
7
8
MAX RAI{GE- IAS / TfJFOI.IE
9
. I.A$J TOROUE
MAX ENOURANCE
:;+l
ei
',#;,41;tiii
g6
qa
Kt5
_io
kt5
kts
L5 )kts
17
s6
.%
ppl'r
kts
pph
L8 )
' ' t
.
, :
r
b
.
10
CRITICAITOHOUE
tb
MAX ALLOWABLEGWT
I
T
4 4
I I
\-/
OPTIMUMfAS AT MAX ALLOWABLEGWT
1,2
M A X H r C- l A $ ' ' T T I F O U E
MAX ALTITUDE. MSL,iMAXENNilRANOE.IA$
DA FOFM 5701_60_R,OCT ?007
kts
qrnrcrrEtialrue;t,
kts
6
CftIIISE FLIELFLO\II
22
Vne-lA$:
{ 16)qr
kts( l{ )
tts
96
kts
4
C f i U I S ES P E E D . I A SI T A S
2L) "
L3
\
I
kts
kts
%
ft
kts
/
\_7
}
kts
20) rt
EDrflflr-r
i oF ?
FREVrou6
rs oBsoLErE, PAGE
APB V1.O,O
DEPARTUREDATA
1. PRESgURE
ALT|TUpE(PA:
Pressurealtitudeis the heightmeasuredabove(or below)the 29.92inchesof mercurywhichis
the standarddatumplane.lt is usedto correlateaerodynamic
and engineperformance
in the
non-standard
pressure
atmosphere.
Thehigherthe
altitudeis abovestandard,
the lowerthe
aircraftperformance
becomesdueto thinnerair density.Fordeparturewe enterthe maximum
andcurrentpressure
(ref.TC 1-237pg 4-16ltem1)
altitudes.
(FAD:
2. FREEAIR TEMPERATURE
This is the forecastair temperature
for the timeourflightwill take place.For departure
computations
we enterthe maximumandcurrentfreeair temperature.
3. AIRCRAFTGROSSWEIGHT:
Aircraftgrossweightis definedas the weightof the aircraftat takeoffand includesthe aircraft
basicweight,crew,internalload,internalfuel,andwhenapplicable,
externalstoressupport
system(ESSS)storesandslingload.Obtainthisvaluefromthe DD Form365-4(Weightand
BalanceClearance
(PC)estimating
FormF) or by the Pilot-ln-Command
thisweight.
4. STORESWEIGHT:
External
storesare definedas a slingload,ESSSwingstores,Volcano,or otherjettisonable
items.
5. FUELWEIGHT:
Fuelweightis theestimated
weightof fuel(internal
andexternal)
thecrewwillhaveonboardat
takeoff.
6. ENGINETORQUEFAGTOR(ETH:
. Enginetorquefactoris definedas the ratioof individual
torqueavailable
as compared
to a
specification
engineat a referencetemperature
pg 7-6.)The
of 35"C(ref.TM 1-1520-237-10
ETFrangeis from.85to 1.0.A 1.0valuemeansthe engine(s)
willperformto or exceeda
specifiedperformance
power)as definedin the Army'scontractwithGeneral
level(specification
Electric(developer
of the T700engines.)
As withanyengine,as operating
timesincrease,
performance
levelswilldecrease.
Thisis dueto erosionof the compressor
blades,turbine
blades,and irregularities
in thegeneralintegrity
of the combustion
section.
The ETFindicates
howfar belowspecification
the engineperformance
willbe. Forexample,an
ETF'cfC35'ooulCperforin857s'as-wellas
a specification
enEine.The ATF and ETF.valtiesicrr
an individual
aircraftcanbe foundon eachHealthIndicator
Test(HlT)login theaircraft
logbook.
AIRCRAFTTORQUEFACTOR(ATfl:
Aircrafttorquefactoris definedas the ratioof aircraftpoweravailableas comparedto
specification
enginesat a referencetemperature
of 35'C. TheATF is the averageof the ETF's
of bothenginesandthisvalueis allowedto rangefrom0.90to 1.0.A 0.85ETFenginewould
requirea minimumof a 0.95ETFon the secondengineto providetheminimumrequired0.90
ATF.Althoughthe ATF is an averageof the ETF's,the propernameis AircraftTorqueFactor,
notAverageTorqueFactor.The ATF is foundon eachHITlog in the aircraftlogbook.
7. TORQUERATIO{TR):
ambient
of availablepowerby incorpqrating
Thetorqueratioprovidesan accurateindication
pilot
to correcta
Simplystated,the TR allowsthe
temperature
effectson engineperformance.
of 35"C.
non-specification
engine(lessthan 1.0 ETF)for lessthanthe referencedtemperature
enginewill be corrected.The colderthe
Fortemperatures
below35"C,a non-specification
goesbelow35"C,the denserthe air becomesandthe moreefficientthe engine
temperature
on nextpage.)
becomesuntilapproaching
Ng limiting(seeNg limitingdescribed
8 . MAXTORQUEAVAILABLE(IRPOTMRP):
to usetwo newtermsthatare nowin the ATM
In the Blackhawk
we are beginning
community
RatedPower(lRP)whichis the 30
firsttermis Intermediate
but'notin TM 1-1520-237-1O.The
is
Maximum
RatedPower(MRP)whichis the
term
The
next
T701.
minutelimitfor the T700and
torqueavailable
at zero
the
maximum
10 minutelimitfor theT701series.Theserepresent
Thesetorque
rangeof PA andtemperature.
airspeedand 100%RPM-Rfor the operational
Theactualmaximumtorque
dueto chapter5 limitations.
valuemayor maynot be continuous
withoutregardto the XMSN
available
figurewill be annotated
on the DA Form5701-60-R,
for ensuringthatchapter5
(transmission)
the aviatoris responsible
torquelimits.lf applicable,
transientlimitsare appliedwhenusinglRP.
(lRP)chartin the operator's
manual
Basedon flighttestdata,the MAXTORQUEAVAILABLE
produce
withoutexceeding
the maximumof the
reflectsthe maximumtorquetheenginescan
A TGT limitercircuitin the ECUcausesthe HMU
three3O-minute
engineoperationlimitations.
of 843'C
limitingtemperature
to limitfuelto the enginewhenTGT reachesthe predetermined
for theT700engine.TGT limitingis usuallywhatwilllimitIRPfot the PA and temperature
combinations
wheremostArmyaviatorsoperate.
Nq Limitinq
for the purposeof IRP:
Ng limiting,
whichis a functionof the HMU,limitsfuelflowto controlrotationspeedof the
on turbineinlet
generator
compressor/gas
turbinerotorswithactuallimitingspeedsdepending
the
designparameters,
(T-2.)WhenP3,T2,and Ng speedreachpre-determined
temperature
from
sectionto preventthe air goingthroughthe compressor
HMUlimitsfuelto the combustion
whichshutsdownthe
reachingMachspeeds.Do notconfusethisfunctionwithNg shutdown,
enginewhenNg speedreaches11Qt2o/o.
Generally,
moreNg is allowedin warmerweatherand lessNg is allowedin colderweather.
it is difficultfor
Becausethe speedat whichNg limitingoccurschangesbasedon temperature,
if Ng limitinghasbeenreachedwithoutdroopingthe rotor.lf rotor
the aircrewto determine
tempeiaturepresetirrtlre ECU,the aireraftis
the"TGT,iimiting
ciruupr
ocuurbv?iiiruui.'reaci'rirrg
Ng limiting.
experiencing
(lRP)chart,eventhoughcolderanddenserair
As shownon the MAXTORQUEAVAILABLE
This
performance,
beginsto decreaseratherthanincrease.
improvesengine
the IRPeventually
prevent
withcolderair.Ng speedis limitedto
happensbecausecriticalMachspeeddecreases
blades
airflowthroughthe enginefromreachingMach.Althoughthe axialcompressor
aboveMachspeeds,the airflowthroughthe enginemustremainsubthemselves
are operating
enginesurge,andlor
sonic.Machairflowthroughthe enginewouldcauseroughness,
compressor
stall.
limits:
Structural
vs. environmental
Forthe UH-60AwithT700engines,if IRPis morethan100%torquedualengine,or 110o/o
limited.Theenginesare capableof
torquesingleengine,theaircraftis saidto be structurally
producingmorepower,but components
of the drivetrainand transmission
are incapableof
sustaining
thesetorqueloadscontinuously
withoutdamage.
lf IRPis belowdualengineor singleenginetorque,the aircraftis saidto be environmentally
limited.Dueto the environmental
conditions,
the enginesare incapable
of producing
powerandtransmission
specification
torquelimitswillnot be reached.In an environmentally
limitedaircraft,attempting
to demandmoretorquethanIRPwillresultin rotordroop.Note:A
demandfor maximumpowerfromengineswithdifferentETF'swillcausea torquesplitwhenthe
lowETFenginereachesTGTlimiting.
Thistorquesplitis normal.Undertheseconditions
the
highpowerenginemayexceedthe dualenginetorquelimit.
Ref.TM 1-1520-237-10,
page5-2paragraph,
5.7.b.
Otherfactorswhichwill affectIRP:
Forthe UH.60A,understand
thata 16%torquereduction
is a maximumvaluewhichwould
resultfromoperation
of bofh engineanti-iceandengineinletanti-ice.Engineanti-iceusesSth
stagebleedair to heatengineswirlvanes,nosesplitters,
andinletguidevanes.However,
depending
on the ambientairtemperature,
the engineinletanti-icevalvemayor maynotopen
between13'C and4"C.Seethe engineHITcheckprocedures
for reference
to these
temperatures.
NOTE
T700engineswithbleedairturnedon, IRPis adjustedas follows:
a. Engine
A n ti -i ce
On....
ir .' ..r ...- 160/o
b . C o ckp iHt e a teOn....
r
......- 4o/o
c. No lR suppressors,
or suppressors
w/o baffles....+1o/o
lf theconditions
aresuchthatthe engineinletanti-icevalveremainsclosed,enginebleedair
demandwillbe lessdueto engineanti-icing
only,andtheaircraftmaynot losea full 16%from
lRP.Ref.TM 1-1520-237-10
page7-6 paragraphs
7.12& 7.13
9. MAXALLOWABLEGWT(OGE/ IGE):
Thisis the maximumweighttheaircraftis capableof, or allowedto operateat a 10foothover
heightfor IGEoperations,
or to a 55 foothoverheightfor OGEoperations.
Thisweightwillbe
limitedby eitherenginecapabilities
or aircraftstructural
design.OGEhoveris definedas 1 rotor
diskdiameter.
OGEhoverin a Blackhawk
is obtainedby roundingup the rotordiameterof 53' 8"
to 55'.
NOTE
The reference
for OGE/IGEhoveris FM 3-04.203beginning
on page1-34,
;fhere.is,no
*-.., ,.r'"llGro+lnd
Effect".
why
.
wri,tten
reason
we
round
53'
8",upto 55'for .
'
OGEhoverotherthaneaseof numberswhilereadingthe radaraltimeter.
The MAXALLOWABLE
GWTIGEor OGEis 22000lbs.lf thisvalueis 22000lbs,thenthe
aircraftis structurally limited.Althoughthe enginesmaybe capableof liftingmoreweight,the
airframeis not.WhenMAXALLOWABLE
GWTvalueis 22000lbs,attemptingto operateat a
weightabovethisvaluewillresultin exceeding
structural
designlimitations
anddamageis
likely.
lf the MAXALLOWABLEGWTIGEor OGEis lessthan 22OOO
lbs,thenthe aircraftis saidto be
environmentallylimited.Althoughthe airframeis capableof liftingup to the chapter5
limitation
of 22000lbs,theenginescannotprovideenoughpowerto liftthisweightfor the given
environmental
conditions.
When.theMAXALLOWABLE
GWTvalueis lessthan22000lbs,
attemptingto operateat a weightabovethatvaluewill resultin rotordroop.
10.GO / NO-GOTORQUE(OGE/ IGE):
This valueprovidesa way for the aircrewto verifythatthe aircraftweightis at or below
maximumlimits.At a 10foothoverheight,thistorquewilldetermineif the aircraftis at or below
the maximumweightthatthe aircraftis capableof liftingto an IGEor OGEaltitude.Hoverpower
checksare normallydoneat an altitudeof 10feetunlessthe missionor terrainconstraints
(ref.ATMTask1028underdescription
1.b.)lf performing
slingload
dictateothenrvise
10feetAGL.
plana GO/NO-GO
valuethatwillplacethe loadat approximately
operations,
NOTE
Forlowwindconditions,
aircraftshouldbe headedintothewind.A 3 to 5 knot
overzero
crosswindor tailwindmay increasetorquevaluesrequiredby up to 4o/o
page7-11figure7-4 NOTE.(lf the takeoff
windvalues.Ref.TM 1-1520-237-10
shouldalsobe givento
directionis notdirectlyintothe wind,consideration
performthe powercheckin the directionof takeoff.)In additionto this noteyou
page7-9and readthe lasttwosentences
of paragraph
7.14.lf
shouldreference
youare in high,hotaltitudes
errorin torque
thenyoucanhaveup to a 7o/o
withhighaltitudetraining
errorsare combined
readings.
Whenthesepotential
thismeansyourzerofuelweightcouldbe
information
fromHAATSin Colorado,
off by morethan1000lbs.
11.MAXIMUM
HOVERHEIGHTIGE(dualenqine):
Thisvalueis for determining
maximumhoverheightwhenaircraftGWTexceedsmaxallowable
GWTOGE;you do not havethe powerto hoverOGEor makeit to 55 feet.
12.PREDICTED
HOVERTORQUE(dualenqine):
10foothover,dualengine,usingtakeoff
Thisis the estimated
torquerequiredfor a stationary
GWT,PA,and FAT.The aircrewcomparesthe actualhovertorqueagainstthisvalueon the DA
Form5701-60-R
in an effortto validateactualtakeoffweight.Forexternalloadoperations,
recordthe predicted
torquerequiredto hoverat a heightthatwillplacethe loadat approximately
10feetAGL.
NOTE
value,it couldbe
lf the actualhovertorqueis notequalto the predicted
attributed
to someof thefollowingconditions:
::e' r
Wasthe 365-4reviewed?
lf the
a. Theaircraftweightis not as predicted.
and
is still
365-4,
the
actual
hover
torque
correctweightwas usedfromthe
predicted,
the aircrewcanworkthe hoverchartbackwards
differentthan
.r r r..to iietermine th€ curr€ntweight.
i'-'.- i i
,!:,'
,
,
of the DA
conditions
havechangedsincethe computation
b. Environment
and
Form5701-60-R.
Hovervaluesare basedon zerowindconditions
Hoveringoverotherthan
strongwindscan affecthoverperformance.
level,smoothsurfacescan alsoaffecthovertorque.Ref.TM 1-1520-23710,page7-11figure7-4 NOTEand page7-9 paragraph7.14.a.
c. Makingan errorderivingthisvaluefromthe chart.
problems.
d. Aircraftmaintenance
- IAS- WO / W STORES:
13.MINSE AIRSPEED
whereconsideration
shouldbe givento an IGE
Thisis theairspeedvaluefor OGEconditions
takeoffif conditionsmerit.
14.ZEROFUELWEIGHT:
Thezerofuelweightis necessary
for dynamicupdatesof the DA Form5701-60-R
when
required.
DESclarification:
ZEROFUELWEIGHT
The DA Form5701-60-R
powermanagemenU
wasdeveloped
to aid in increasing
poweravailable
awareness.
Oneof the criticalcomponents
of thisphilosophy
is
Zero FuelWeight.Whencomputedproperly,thiswill giveyouthe weightof the
aircraftat anygiventime.Usingthe Zero FuelWeightfromthe DD Form365-4
may not be accuratedue to the useof standardized
weightsusedfor DD Form
365-4calculations.
In orderto determine
thetrueZeroFuelWeight,the items
neededto computethisshouldbe gatheredduringthe hovercheckand
calculatedon the ground,or if not practical,shortlyaftertakeoffor leveloff.
TC 1-237statesthatwhenDA Form5701-60-Ris requiredit will be completedin
its entirety.
Thiscomputation
mustbe completed
eachtimeDA Form5701-60-R
is requiredIAWTC 1-237.
REMARKSSECTIONOF THE PPC
EMERGENGY
SE.IAS:
Do notconfuseSE cruisespeedin the CruiseDatasectionwithemergency
SE lAS.The
emergency
single-engine
airspeedis the speedusedimmediately
following
an emergency
that
requiresadjustment
to the airspeed.
Single-engine
cruisespeedandassociated
datais usedin
pre-mission
planning.
ln the eventan enginefails,malfunctions
or mustbe shutdownand SE
operations
(suchas overwater,jungle,denselyforested
are possiblebut landingis not practical
areas,mountainous
terrainor otherimpractical
landingareas),the SE cruisespeedmay be
usedafterestablishing
emergency
SE airspeed.
EMERGENCY
SE-IASis theemergency
SE
airspeedbasedon engineperformance/capability
and briefedto the crew for the purpose of
crew coordination.Carefulconsideration
shouldbe givento usingan airspeedthatis closeto
the M.AX'SElAS.The reasonfor this is thatwe are keepingkineticenergyin the rotorsystem
shnt:ldwe neeclit. lt is rnoredifficultto aecelerate
SE:shor;lc!
weneed.thespeed.Cncewe hav
assessedthe situationand takencareof the emergencywe canalwaysslowdownif so desired.
CRUISEDATA
1. fr
Selectedbasedon missionrequirements
2. FAT:TakenfromyourDD From175-1orequivalent
3. MIN/ MAX- IAS (dualensine):
Thisvalueis definedas the lowestand highestspeedattainedlevelflightfor a specificaltitude,
The MAX
weight,configuration,
and powersetting.The MINIASis usuallyzerofor dual-engine.
of grossweightarc and IRPor the XMSN
IASlevelflightairspeedis obtainedat the intersection
torquelimit,whicheveris lower.Thisshouldnot be confusedwithVh, whichusesmaximum
continuouspower.
4. GRUISESPEEDIAS/ TAS (dualenqine):
Cruisespeedis dictatedby the missionor chosenby the pilotwithinaircraftlimits.IASis the
for standardatmospheric
thathasbeencalibrated
airspeedas shownon the airspeedindicator
for airspeedsystemerrors.
conditionsat sea leveland is uncorrected
NOTE
(CAS)
airspeedcorrected
for positionand
indicated
is the
Calibrated
airspeed
instrument
error.CASwouldbe equalto trueairspeedat standard
at sea level.lf desired,CAScan be foundby referring
atmospheric
conditions
to the CAS placardlocatedin the aircrafton the lefthandsideof the lower
betweenIASand CASis notenoughto be considered
console.The difference
significant.
The -10 statesthat IAScan be directlyconvertedto TAS on the
Ref.TM 1-1520-237-1O,
chartwithoutregardfor theotherchartinformation.
page7-13,paragraph
7.17a.
in the absenceof
airspeedis not applicable
TAS is calibrated
airspeed(equivalent
for errordueto densityaltitude.Sincethe airspeedindicatoris
compressibility
effects)corrected
to airspeeds
at sea levelconditions,
corresponding
calibrated
for the dynamicpressures
variations
mustaccountfor air densityotherthanstandard.
the cruise
to usefor the DA From5701-60-R,
Whendetermining
whatairspeed(dual-engine)
IASplannedfor the majorityof the flightshouldbe used.Thiswillprovidethe bestestimateof
120KIASis commonly
usedin line
operation,
fuelflow(burnrate)perhour.Fordual-engine
generally
on fuel
usedin flightschool;howeverthisvariesdepending
unitsand 100KIASin
(i.e.ExtendedRange
andaircraftconfiguration
requirements,
missionrequirements,
endurance
FuelSystemor ERFS.)
5. MAXTORQUEAVAILABLE(dualenqine):
Thecruisechartshavefixed
Thistorqueis computedusingplannedcruiseairspeed.
chart,whichhasunlimited
unlikethe MaxTorqueAvailable
temperature
and PA combinations,
in manycases,the cruisechartsare more
However,
temperature
and PA combinations.
of addingram air effect.
accuratedue to the computation
data
NOTE:The IRPvaluesfoundin the cruisechartsfor the-10 andthe tabularperformance
of the -CL are adjustedfor torqueratio.
6. CRUISETORQUE/ CONTTORQUEAVAILABLE:
CRUISETORQUEis simplythetorquerequired
to maintainyourdesiredcruiseairspeedfor
yourgivenweightandconfiguration.
CRUISETORQUEshouldneverexceedCONTTORQUE
AVAILABLE.
lf missionairspeedis closeto our CONTTORQUEAVAILABLE,
increased
drag
by a slingload,an opendoor,turbulence,
or theaircraftoutof trimcannowcauseus to be
operating
aboveour CONTTORQUEAVAILABLE.
CONTTORQUEAVAILABLE
/ MAXCONTPOWERis the mosttorquethe enginescan
producecontinually
and remainoutof the 30 minuteengineoperating
limitations.
Thisis the
MCPlinein the cruisechartsin chapter7 of the-10.Theaircraftwillbe at the top of one or
moreof thecontinuous
ranges:1)TGT-775"C;2)Ng- 99o/oi
3) Engoiltemp135"C.As the
. nameimplies,thereis no timelimiton maintaining
thistorque.
Usesof continuous
torque:
Continuous
torquemaybe of valueto the aircrewif fueleconomyis nota concernandthe
aircrewwantsto makean extendedclimbof severalthousand
feet,whilemaintaining
a given
airspeedand remaining
you
out of any3O-minute
limits.Remember
that
maybe in your30minutelimitsbasedon engineanti-iceand heaterusage.
Foranotherapplication,
perhapsthe aircrewis on an IFRflightenrouteto a destination
and
ATCadvisesthe crewto climbto a higheraltitude.lf thereis morethan1000feetto climb,the
pilotshouldclimbat an optimumrateconsistent
withaircraftcapabilities
untilwithin1000feetof
the assigned
altitude.By utilizingMAXCONTPOWER,the aircraftcouldclimbat an optimum
rate(notwithin30-minute
limits)whilestillmaintaining
theairspeed
filedon theflightplan.
NOTE
Usethe samevaluesyouusedin IRPadjustments
(minus16%engineanti-ice
on and minus4o/o
heateron.)Example:
Youare planninga 2 hourIFR
mission.Youplanto usethe heaterandengineanti-ice,butyounoticethat
whensubtracting
20o/o
thiswillput cruisetorquewiththe 3O-minute
timelimit
ranges.Carefulconsideration
by the crewmustbe givento the useof eachof
thesesystemson the aircraft.
Bleedair reducestorqueavailable
fromthetop endof lRP.Cruiseandhovertorquerequired,
remainunaffected.
Whythendo we adjustMAXCONTPOWERfor bleedair operation?
When
bleedair is takenfromtheengines,theyoperatelessefficiently
andresultin higherTGT'sto
producethe sameamountof torqueas withoutbleedair.
7. CRUISEFUELFLOW:
Thisis the predicted
fuelflow(burnrate)thattheaircraftshouldhaveat cruisetorque.Notethat
the cruisefuelflow requiresa relativelyconstanttorquesettingto be accurate.Aircraftflyingin
the rearof formations
typicallyconsume50 to 100lbs/hrmorethanpredicted.
Thiswillvary
depending
on theformation
positions.
sizeandaircrewproficiency
in maintaining
formation
SE
fuelflowvaluesare derivedfromhalfthe amountof the torquerequiredsincethe burnratesat
thetop of the chartsarefor dualengine.Don'tget caughtshort on multi-shipmissionsl
Fuel Flow Gorrections(dualengine)T-700Engine:
a.
Enganti-iceon:
About60 lbs/hr
b.
Heateron:
About20 lbs/hr
c.
Bothon:
About80 lbs/hr
page7-153,paragraph
Ref.TM 1-1520-237-10,
7.26
and the bafflesremoved,the dualengine
systemis installed
In addition,
whenan lR suppressor
fuelflowwilldecreaseabout16 lbsihr,8 lbs/hrSE (T-700.)The decreasein exhaustback
pressureimprovesengineefficiency.
8. MAXRANGEIAS/ TORQUE(dualenqine):
Thisis definedas the speedwhichyieldsthe maximumnauticalmilesper poundof fuelfor a
weight,andaltitude.The maximumratelines(MAXRANGE)indicatethe
specificconfiguration,
combinations
of grossweightandairspeedthatwill producethegreatestflightrangeper pound
Thisis a goodvalueto usefor planningwhenthe missionwill
of fuelunderzerowindconditions.
not allowlargefuel reservesbetweenrefuelingstops.A methodof estimatingmaximumrange
speedin windsis to increaseIASby 2.5 knotspereach10 knotsof effectiveheadwind(which
lossin range)and decreaseIASby 2.5 knotsper 10 knotsof
reducesflighttimeand minimizes
effective
tailwindfor economy.Thisairspeedcanalsobe usedas the maximumturbulence
page
penetration
airspeed,providedit is lessthanVneminus15 knots.Ref.TM 1-1520'237-10,
8.41.2.
8-26,paragraph
L
IAS/ TORQUE(dualenqine):
MAX ENDURANGE
for a specific
Thisis definedas the speedwhichyieldsthe minimumfuelflowattainable
willgive
IAS/TORQUE
MAX
ENDURANCE
configuration,
weight,andaltitude.Simplystated,
pound
of fuel.
youthe mostHOURSof flighttimeper
for a givengrossweight.
of IASandtorquenecessary
is a combination
Maximumendurance
is a minimum,providing
a minimumfuelflow
Thetorquerequiredfor levelflightat thiscondition
rateof
for climb(maximum
(maximum
anda maximumtorquechangeavailable
endurance)
longest
straight
levelfor
the
aircraft
to
fly
and
the
will
allow
IAS
climb.)The MAXENDURANCE
periodof time(timealoftor loitertime)dueto the lowestfuelburnrate.Thisairspeedwill
at a torquevaluethatprovideslevelflight.
produceMAXENDURANCE
onlywhenoperating
Perhapsthereis
mightbe usedfor thefollowing:
IAS/TORQUE
MAXENDURANCE
the
mountainous
terrainto clearalongthe route.By enteringthe chartat a givenairspeed,
The
for flightplanningpurposes.
groundspeedand estimated
timesenroutecouldbe computed
the excesspowerbetweenCRUISETORQUE
rateof climbcouldbe computedby determining
Thisexcesspowervalueis
and IRPfor the airspeedselected(lRPminusCRUISETOROUE.)
-10
pages7-151and7-152)to
(Fig.
7-33
and
7-34
on
chartsin the
usedin the Climb/Descent
timeto reachthe desiredaltitude.Keepin
computea rateof climbas wellas an approximate
and PA changeduringthe climb,so doesMAXCONTPOWERandior
mindthatas temperature
,diiupreed:
IASchangestti MAXR/C IASwhertappiyitlg
MAX'ENDURANCE
Aiso,ciuiiiig,a<;lirnb
MaximumTorqueAvailable.
10.CRITICAL
TORQUE(dualenqine):
maynotallowthe aircraft
CriticalTorqueis the dualenginetorquevalue,whichwhenexceeded,
in the sameflight
operations
to maintain% RPMR withinnormallimitsundersingle-engine
of aircraftdemands
awareness
to aid in situational
conditions.
CriticalTorquewas incorporated
vs. aircraftcapabilities.
thatrequiretorquesettingsgreaterthancriticaltorque
flight,conditions
Duringdual-engine
capability
of the lowETFengine.lf
pilot
outsidesingle-engine
is operating
indicatethatthe
or mustbe
dual-engine
abovethe criticaltorqueandthe enginefails,malfunctions,
operating
andiorgrossweightto establish
adjusttorque,airspeed,
shutdown,the pilotmustimmediately
levelflight.
single-engine
11. MA_X
AI-LOWABLEGWT& OPTIMUMAIRSPEEDAT MAXALLOWABLEGWT(dual
enqine):Thiswill providethe aircrewwithan airspeedvalueto fly as quicklyas possin6to the
destination,
whileremaining
outof any30-minute
limitsor the lowestpossible
TGT.Thisis a
morepracticalpre-mission
planningvaluethat mayprovemoreusefulto the aviator.lt also
helpsfor planningadjustments
of lAS,weight,andaltitudeby providing
increased
situational
awareness
of missionrequirements.
12.MAXR/CIAS/ TORQUE:
Thisis the airspeedthatallowsthe aircraftto climbfromonealtitudeto a higheraltitudein the
leastamountof timewhenusinglRP.
NOTE
Althoughthe aircraftmay be at the MAXRyCairspeed,it will onlyproducea
maximumrateof climbif IRPis utilized.
Anytorquesettinglessthanthe
maximumwill producethe bestrateof climbperformance
for the power
applied.The MAXR/Cairspeedwillalwaysbe the lowesttotaldragairspeed.
Remember
thatthisairspeedis simplyMAXENDUMNCEairspeedcorrected
for our pitotstatic
systemerror.We determinethe amountof correctionin chapter7 of the -10 basedon howfast
(or slow)we can climb.Thefollowingis a briefexplanation
of why MAXR/Cairspeedneedsto
be correctedfor the differentratesof climb.
To minimize
sensingerrors,the pitottubesarein a locationthatallowsminimumdisturbance
of
air causedby aircraftmotion.An errorresultsfromclimbslessthan1400fpmandwillresultin a
lowerindicated
airspeed.
Climbsgreaterthan1400fpmwillresultin higherindicated
airspeed.
Thesepitottubesensingerrorsoccuras a resultof disturbed
airflowin andaroundthe pitot
tubes.
13.MAXALTITUDE- MSL:
Thisis the maximumaltitudetheaircraftcanfly at MAXENDURANCE
IASfor itsgivenweight,
configuration,
and ETF/ATF.
14.MIN/MAX- IAS (sinsleensine):
This is a veryimportantblock,but unfortunately,
it oftenreceivesverylittleattentionby aircrews.
Forexample,a rapidapplication
of collective
by flightleadduringmulti-ship
operations
is a
greatexampleof this.Enginefailuresare uncommon
in the Blackhawk,
buttheconsequences
canbe undesirable
andare avoidable
duringcertainflightmodes.Quickapplication
of these
.rvalues'willoften
makethe differencebetweenflyingaway.toa safelanding,r:r.r"nerely
extending
yourglidepathto the crashsite.Keepingyourairspeedbetweenthesetwo valuesin a singleenginesituation
is critical.
MINSE IASis the minimumairspeedpossible
withoutlosingaltitudeduring-single
engine
operation.
At the MINSE lAS,theaircraftwouldbe operating
at IRPandTGTwouldhave
reachedTGTlimiting(a functionof the ECU.)Remember
thatif the derivedairspeedis less
than40 KIAS,theindicated
(ref.TM 1-1520-237-10,
airspeedwillbe unreliable
pageT-150,
paragraph
7.27.1NOTE.)
MAXSE IASis the maximumairspeedpossible
withoutlosingaltitudewitha singleengine
operating.
lf the derivedmaximumairspeedexceeds130KIAS,youmustuse 130KIASper
chapter5 limits.lf at the MAXSE IAS(below130KIAS)theaircraftwillbe usingthe maximum
poweravailable,
youwillbe in theTGT3O-minute
limitandTGTwouldalsobe at the limiter
L1,
temperature
for the ECU.lf the aircraftis operatingabovethe MAXSE IASwhenan engine
fails,rotordroopwilloccurquickly.Delayedpilotreactionin slowingthe aircraftdownwill result
notto operateat terrainflightaltitudes
in rotorbleed-off
andaltitudeloss.lt is a goodtechnique
to recoverin the eventof
abovethe MAXSE lAS.Thisis dueto the minimalaltitudeavailable
an aircrewbeingslowto recognizethe enginefailureand/orreactiontime to the emergency.
(RPM<96%)
by the timethe low-rotor
Remember,
rotorRPMhasalreadydecayedsignificantly
not
respond
in time.Boththe min
may
be
able
to
audioactivates
andeventhe sharpestcrew
Do notassumethatflightis notpossiblebelowthe
and maxairspeeds
arefor OGEaltitudes.
belowthe MINSE IASand/orhoveringflightmay be
MINSE lAS.lf operatinglGE,airspeeds
possible.
15.GRUISESPEEDIAS/ TAS(sinqleenqine):
In determining
SE cruisespeed,the aviatorhasthe optionof choosinganyspeedthatfalls
withinthe MIN/MAXSE speedrange.lf missionairspeedfallswithinthisrangeanddoesnot
causeIRPconditions,
commonsensetellsus to useour missionairspeed.lf we cannot
we shouldselectan airspeedthatis more
maintainour missionairspeedwithoutIRPconditions,
Thiscouldmeansimplyslowingdownby a few knotsor
suitableto engineperformance.
possiblyusingour MAXENDURANCE
lAS.lf we are so heavythatwe canonlyuseour MAX
thatwe couldnowbe in a forcedbutcontrolled
ENDURANCE
lAS,it shouldbe understood
need
to be foundif a loweraltitudedoesnotallowus
descentanda suitablelandingareamay
continued
flight.
16.MAXTORQUEAVAILABLE(sinqleensine):
Thistorqueis computedusingplannedsingleenginecruiseairspeed.
17.GRUISETORQUE/ GONTTORQUEAVAILABLE(SINGLEENGINE):
givenin item6. of CruiseData
Thisitemgenerally
followsthe explanation
18.CRUISEFUELFLOW(sinqleenqine):
Sincethe basicconcdptis the sameas dualengine,seeitem7.
19.MAXALLOWABLEGWT& OPTIMUMAIRSPEEDAT MAXALLOWABLEGWT(sinqlE
enqine):Thisis the maximumweightthatoneengineis capableof poweringin levelflight.This
attention
to whetheryouwill be
weightis basedon the weakerengineETF.Payparticular
flying
weight
value.
lf
at
a
aboveMAXALLOWABLE
this
operating
dualengineat weightsabove
poweror a descent
landing
with
descentand
GWTSE,an enginefailurewillforcea controlled
in the normalrange.FlyingaboveMAX
to a loweraltitudeif RPMR is to be maintained
prucess.lf the fligltiis
in the riskmanagernent
ALLOvVATLE
GVVTSE sfrouldbe considered
increasethe risk
terrain,suchconditions
overwateror heavilywoodedand/ormountainous
involved
witha forcedlanding.
20. MAXALLOWABLEGWT& OPTIMUMAIRSPEEDAT MAXALLOWABLEGWT(siNgIE
enqine):
Sincethe basicconceptis the sameas dualengine,seeitem11.
21.MAXANGLE:
of figure5-8,whichis usedto
the application
for Vnediscusses
Itemb of the sameparagraph
produce
will
likely
that
bladestall.Whilethe
determine
of bankcombinations
airspeed/angle
-10
prohibits
the
expressly
anymaneuvering
airspeed/angle
chartis notan aircraftlimitation,
vibration.
increasein.4per revolution
whichresultsin severebladestallanda significant
12
Compressibility
is givenconsideration
by referringto figure5-8 in the -10. Notethat any
airspeed
belowthedashedlineslabeled"machlimits"couldresultin compressible
flowoverthe
advancing
blades.Notethatthisshouldnot be a problemfor temperatures
above-10"C.Lastly,
aircraftstructural
damageand/orcomponent
failureis a possibleoutcomeif the aircraftexceeds
Vneduringflight.
22.VELOCITY
NEVERTO EXGEEDffne):
Themaximumpermittedairspeedas a functionof temperature,
PA,and weight.Thisairspeed
cannotbe attainedin levelflight.The aircraftwill haveto be in a dive/descent
to achievethis
speed.Exceeding
thisspeedmaycausethe aircraftto encounterthe effectsof retreatingblade
stall,compressibility,
and/oraircraftstructuraldamage.Retreatingbladestallhasnot been
encountered
in oneG flightup to the airspeeds
shownon the Vnechartin chapter5 of the -10.
Notethatretreatingbladestallmaybe encountered
at airspeedsmuchlessthanVnewhen
maneuvering
or encountering
turbulence.
Ref.TM 1-1520-237-10,
page5-18,paragraph
5.23.3.a
REMAINING
ENVIRONM
ENTALCONSIDERATIONS
MODERATE
TURBULENCE:
Formoderate
turbulence,
limitairspeedto MAXMNGE airspeedor Vne minus15 knots,
whichever
is less.The 15knotspeedreduction
fromVnereducesthe likelihood
of the pilot
exceeding
Vnedueto airspeedfluctuations
associated
withturbulence.
Dueto these
fluctuations
in airspeedindications,
maintaining
a constantpowersettingand levelattitudewill
ensurea relatively
constantairspeed.
page8-26,paragraph
Ref.TM 1-1520-237-10,
8.41.2
13