DA Form 5701-60-R Whatdo the numbersmean? Thishandouthas beencompiledfromprevioussourcesand verifiedto be correctas of January27,2O1O by CW3JoshuaMeyers,FSXXIInstructor Pilot,E Co 1-212Avn,Ft. Rucker, AL. The information is currentIAWPerformance PlanningCardDA Form5701-60-ROCT2007; TC 1-237Oct2007appendixE; TM 1-1520-237-105 dated25 September2009; and FM 3-04.203datedMay 2007. The purposeof thishandoutis to helpaviatorsbetterunderstand whatthe entrieson the DA Form5701-60-R meanand howto incorporate themintowhatwe do as pilots. The secondpageof thishandoutshowsDA Form5701-60-R and hasnumbersfor each locationiblock thatdirectlycorrespond to howtheyare listedin theATM,Task1010Preparea Performance PlanningCard.Eachsubjectareain the handoutis numbered corresponding to the ATMandthe PPCshownon the nextpage. DA FORM5701.60-R The purposeof the DA Form5701-60-R is to givethe pilotsa dynamictoolto enhancemission accomplishment in determining the maximumaircraftperformance for powermanagement in anygivenmissionscenario. Thedatapresented in the performance chartsare primarily derived for a cleanUH-60Aandare basedon US Armytestdata.Thecleanconfiguration assumesall doorsandwindowsare closedwiththefollowing externalconfiguration: 1. 2. 3. 4. 5. Fixedprovisions for the ExternalStoresSupportSystem(ESSS) Mainandtailrotorde-icesystem Mountingbracketsfor infrared(lR)jammerandchaffdispenser HoverInfraredSuppressor System(HIRSS)withbafflesinstalled Includes wirestrikeprotection systemsinstalled Thedatapresented in the highdragchartsare primarily derivedfor a UH-60Aand basedon US Armytestdata.The highdragconfiguration assumesall doorsandwindowsare closedwiththe followingexternalconfiguration : 1. "EsSs rnstalteci 2. Two23O-gallon tanksmountedon the outboardpylons 3. Inboardverticalpylonsempty 4. lR jammerandchaffdispenser installed 5. HoverlnfraredSuppressor System(HIRSS)withbafflesinstalled 6. Mainandtailrotordeiceandwirestrikeprotection systemsinstalled PTANNINGCARD H-6O PERFORMAf{CE For use of this form, see TC 1-237; the proponent agencY is TRADOC' DEPARTIJRE A I R C F A F TG W T : ( 3 STORESWEIGHT: Z E R OFIJEL WEIGFIT: t4 sc/ fr FAT:( 2 ftl oc i:rilij ;ridiiih il-r ,i'ii#i &,{g ! .;: . l: i t. 'j;r' 'r.,j li i-;.t;ar fi',#[ ,ii1..*f;!.i,i 4,sr$:'i Ib 5 FIJELWEIGHT: L FA: tb ( q lb tb EIE: ( 6 7 )- 6 .4TF: 7 TCIFO[.'EFATIO 8 MAX TOROUEAVAITABLE ilo 9 )tu M A X A L I O W A B L EG W T O G E JI G E 10 GO.I[!IO GO TCIROUEOGE/IGE ,a?- 8 ) 9 / o :lo 9 )tu L0 94 T2 q6 LT M A X H O V E f lH E I G H TI G E ETF: Jt PREDICTED HOVEHTOROUE g/o it 13 MIN SE AIfrSPEED- IAS- WO,,WSTOHE 13 kts l{ts REIVIARKS: E M E H5 E I A 3 : CRUISE PA:( 1)tt lrnt, 2 o{' MAX,AMGI-E: 5 MAX TORIXUEAVAILAtsI.E 3 M l l { ; I \ I A X- l A $ CRUISETOROUEJ CI]NT TOFOUEAt/AILA8LI x5 It 7 8 MAX RAI{GE- IAS / TfJFOI.IE 9 . I.A$J TOROUE MAX ENOURANCE :;+l ei ',#;,41;tiii g6 qa Kt5 _io kt5 kts L5 )kts 17 s6 .% ppl'r kts pph L8 ) ' ' t . , : r b . 10 CRITICAITOHOUE tb MAX ALLOWABLEGWT I T 4 4 I I \-/ OPTIMUMfAS AT MAX ALLOWABLEGWT 1,2 M A X H r C- l A $ ' ' T T I F O U E MAX ALTITUDE. MSL,iMAXENNilRANOE.IA$ DA FOFM 5701_60_R,OCT ?007 kts qrnrcrrEtialrue;t, kts 6 CftIIISE FLIELFLO\II 22 Vne-lA$: { 16)qr kts( l{ ) tts 96 kts 4 C f i U I S ES P E E D . I A SI T A S 2L) " L3 \ I kts kts % ft kts / \_7 } kts 20) rt EDrflflr-r i oF ? FREVrou6 rs oBsoLErE, PAGE APB V1.O,O DEPARTUREDATA 1. PRESgURE ALT|TUpE(PA: Pressurealtitudeis the heightmeasuredabove(or below)the 29.92inchesof mercurywhichis the standarddatumplane.lt is usedto correlateaerodynamic and engineperformance in the non-standard pressure atmosphere. Thehigherthe altitudeis abovestandard, the lowerthe aircraftperformance becomesdueto thinnerair density.Fordeparturewe enterthe maximum andcurrentpressure (ref.TC 1-237pg 4-16ltem1) altitudes. (FAD: 2. FREEAIR TEMPERATURE This is the forecastair temperature for the timeourflightwill take place.For departure computations we enterthe maximumandcurrentfreeair temperature. 3. AIRCRAFTGROSSWEIGHT: Aircraftgrossweightis definedas the weightof the aircraftat takeoffand includesthe aircraft basicweight,crew,internalload,internalfuel,andwhenapplicable, externalstoressupport system(ESSS)storesandslingload.Obtainthisvaluefromthe DD Form365-4(Weightand BalanceClearance (PC)estimating FormF) or by the Pilot-ln-Command thisweight. 4. STORESWEIGHT: External storesare definedas a slingload,ESSSwingstores,Volcano,or otherjettisonable items. 5. FUELWEIGHT: Fuelweightis theestimated weightof fuel(internal andexternal) thecrewwillhaveonboardat takeoff. 6. ENGINETORQUEFAGTOR(ETH: . Enginetorquefactoris definedas the ratioof individual torqueavailable as compared to a specification engineat a referencetemperature pg 7-6.)The of 35"C(ref.TM 1-1520-237-10 ETFrangeis from.85to 1.0.A 1.0valuemeansthe engine(s) willperformto or exceeda specifiedperformance power)as definedin the Army'scontractwithGeneral level(specification Electric(developer of the T700engines.) As withanyengine,as operating timesincrease, performance levelswilldecrease. Thisis dueto erosionof the compressor blades,turbine blades,and irregularities in thegeneralintegrity of the combustion section. The ETFindicates howfar belowspecification the engineperformance willbe. Forexample,an ETF'cfC35'ooulCperforin857s'as-wellas a specification enEine.The ATF and ETF.valtiesicrr an individual aircraftcanbe foundon eachHealthIndicator Test(HlT)login theaircraft logbook. AIRCRAFTTORQUEFACTOR(ATfl: Aircrafttorquefactoris definedas the ratioof aircraftpoweravailableas comparedto specification enginesat a referencetemperature of 35'C. TheATF is the averageof the ETF's of bothenginesandthisvalueis allowedto rangefrom0.90to 1.0.A 0.85ETFenginewould requirea minimumof a 0.95ETFon the secondengineto providetheminimumrequired0.90 ATF.Althoughthe ATF is an averageof the ETF's,the propernameis AircraftTorqueFactor, notAverageTorqueFactor.The ATF is foundon eachHITlog in the aircraftlogbook. 7. TORQUERATIO{TR): ambient of availablepowerby incorpqrating Thetorqueratioprovidesan accurateindication pilot to correcta Simplystated,the TR allowsthe temperature effectson engineperformance. of 35"C. non-specification engine(lessthan 1.0 ETF)for lessthanthe referencedtemperature enginewill be corrected.The colderthe Fortemperatures below35"C,a non-specification goesbelow35"C,the denserthe air becomesandthe moreefficientthe engine temperature on nextpage.) becomesuntilapproaching Ng limiting(seeNg limitingdescribed 8 . MAXTORQUEAVAILABLE(IRPOTMRP): to usetwo newtermsthatare nowin the ATM In the Blackhawk we are beginning community RatedPower(lRP)whichis the 30 firsttermis Intermediate but'notin TM 1-1520-237-1O.The is Maximum RatedPower(MRP)whichis the term The next T701. minutelimitfor the T700and torqueavailable at zero the maximum 10 minutelimitfor theT701series.Theserepresent Thesetorque rangeof PA andtemperature. airspeedand 100%RPM-Rfor the operational Theactualmaximumtorque dueto chapter5 limitations. valuemayor maynot be continuous withoutregardto the XMSN available figurewill be annotated on the DA Form5701-60-R, for ensuringthatchapter5 (transmission) the aviatoris responsible torquelimits.lf applicable, transientlimitsare appliedwhenusinglRP. (lRP)chartin the operator's manual Basedon flighttestdata,the MAXTORQUEAVAILABLE produce withoutexceeding the maximumof the reflectsthe maximumtorquetheenginescan A TGT limitercircuitin the ECUcausesthe HMU three3O-minute engineoperationlimitations. of 843'C limitingtemperature to limitfuelto the enginewhenTGT reachesthe predetermined for theT700engine.TGT limitingis usuallywhatwilllimitIRPfot the PA and temperature combinations wheremostArmyaviatorsoperate. Nq Limitinq for the purposeof IRP: Ng limiting, whichis a functionof the HMU,limitsfuelflowto controlrotationspeedof the on turbineinlet generator compressor/gas turbinerotorswithactuallimitingspeedsdepending the designparameters, (T-2.)WhenP3,T2,and Ng speedreachpre-determined temperature from sectionto preventthe air goingthroughthe compressor HMUlimitsfuelto the combustion whichshutsdownthe reachingMachspeeds.Do notconfusethisfunctionwithNg shutdown, enginewhenNg speedreaches11Qt2o/o. Generally, moreNg is allowedin warmerweatherand lessNg is allowedin colderweather. it is difficultfor Becausethe speedat whichNg limitingoccurschangesbasedon temperature, if Ng limitinghasbeenreachedwithoutdroopingthe rotor.lf rotor the aircrewto determine tempeiaturepresetirrtlre ECU,the aireraftis the"TGT,iimiting ciruupr ocuurbv?iiiruui.'reaci'rirrg Ng limiting. experiencing (lRP)chart,eventhoughcolderanddenserair As shownon the MAXTORQUEAVAILABLE This performance, beginsto decreaseratherthanincrease. improvesengine the IRPeventually prevent withcolderair.Ng speedis limitedto happensbecausecriticalMachspeeddecreases blades airflowthroughthe enginefromreachingMach.Althoughthe axialcompressor aboveMachspeeds,the airflowthroughthe enginemustremainsubthemselves are operating enginesurge,andlor sonic.Machairflowthroughthe enginewouldcauseroughness, compressor stall. limits: Structural vs. environmental Forthe UH-60AwithT700engines,if IRPis morethan100%torquedualengine,or 110o/o limited.Theenginesare capableof torquesingleengine,theaircraftis saidto be structurally producingmorepower,but components of the drivetrainand transmission are incapableof sustaining thesetorqueloadscontinuously withoutdamage. lf IRPis belowdualengineor singleenginetorque,the aircraftis saidto be environmentally limited.Dueto the environmental conditions, the enginesare incapable of producing powerandtransmission specification torquelimitswillnot be reached.In an environmentally limitedaircraft,attempting to demandmoretorquethanIRPwillresultin rotordroop.Note:A demandfor maximumpowerfromengineswithdifferentETF'swillcausea torquesplitwhenthe lowETFenginereachesTGTlimiting. Thistorquesplitis normal.Undertheseconditions the highpowerenginemayexceedthe dualenginetorquelimit. Ref.TM 1-1520-237-10, page5-2paragraph, 5.7.b. Otherfactorswhichwill affectIRP: Forthe UH.60A,understand thata 16%torquereduction is a maximumvaluewhichwould resultfromoperation of bofh engineanti-iceandengineinletanti-ice.Engineanti-iceusesSth stagebleedair to heatengineswirlvanes,nosesplitters, andinletguidevanes.However, depending on the ambientairtemperature, the engineinletanti-icevalvemayor maynotopen between13'C and4"C.Seethe engineHITcheckprocedures for reference to these temperatures. NOTE T700engineswithbleedairturnedon, IRPis adjustedas follows: a. Engine A n ti -i ce On.... ir .' ..r ...- 160/o b . C o ckp iHt e a teOn.... r ......- 4o/o c. No lR suppressors, or suppressors w/o baffles....+1o/o lf theconditions aresuchthatthe engineinletanti-icevalveremainsclosed,enginebleedair demandwillbe lessdueto engineanti-icing only,andtheaircraftmaynot losea full 16%from lRP.Ref.TM 1-1520-237-10 page7-6 paragraphs 7.12& 7.13 9. MAXALLOWABLEGWT(OGE/ IGE): Thisis the maximumweighttheaircraftis capableof, or allowedto operateat a 10foothover heightfor IGEoperations, or to a 55 foothoverheightfor OGEoperations. Thisweightwillbe limitedby eitherenginecapabilities or aircraftstructural design.OGEhoveris definedas 1 rotor diskdiameter. OGEhoverin a Blackhawk is obtainedby roundingup the rotordiameterof 53' 8" to 55'. NOTE The reference for OGE/IGEhoveris FM 3-04.203beginning on page1-34, ;fhere.is,no *-.., ,.r'"llGro+lnd Effect". why . wri,tten reason we round 53' 8",upto 55'for . ' OGEhoverotherthaneaseof numberswhilereadingthe radaraltimeter. The MAXALLOWABLE GWTIGEor OGEis 22000lbs.lf thisvalueis 22000lbs,thenthe aircraftis structurally limited.Althoughthe enginesmaybe capableof liftingmoreweight,the airframeis not.WhenMAXALLOWABLE GWTvalueis 22000lbs,attemptingto operateat a weightabovethisvaluewillresultin exceeding structural designlimitations anddamageis likely. lf the MAXALLOWABLEGWTIGEor OGEis lessthan 22OOO lbs,thenthe aircraftis saidto be environmentallylimited.Althoughthe airframeis capableof liftingup to the chapter5 limitation of 22000lbs,theenginescannotprovideenoughpowerto liftthisweightfor the given environmental conditions. When.theMAXALLOWABLE GWTvalueis lessthan22000lbs, attemptingto operateat a weightabovethatvaluewill resultin rotordroop. 10.GO / NO-GOTORQUE(OGE/ IGE): This valueprovidesa way for the aircrewto verifythatthe aircraftweightis at or below maximumlimits.At a 10foothoverheight,thistorquewilldetermineif the aircraftis at or below the maximumweightthatthe aircraftis capableof liftingto an IGEor OGEaltitude.Hoverpower checksare normallydoneat an altitudeof 10feetunlessthe missionor terrainconstraints (ref.ATMTask1028underdescription 1.b.)lf performing slingload dictateothenrvise 10feetAGL. plana GO/NO-GO valuethatwillplacethe loadat approximately operations, NOTE Forlowwindconditions, aircraftshouldbe headedintothewind.A 3 to 5 knot overzero crosswindor tailwindmay increasetorquevaluesrequiredby up to 4o/o page7-11figure7-4 NOTE.(lf the takeoff windvalues.Ref.TM 1-1520-237-10 shouldalsobe givento directionis notdirectlyintothe wind,consideration performthe powercheckin the directionof takeoff.)In additionto this noteyou page7-9and readthe lasttwosentences of paragraph 7.14.lf shouldreference youare in high,hotaltitudes errorin torque thenyoucanhaveup to a 7o/o withhighaltitudetraining errorsare combined readings. Whenthesepotential thismeansyourzerofuelweightcouldbe information fromHAATSin Colorado, off by morethan1000lbs. 11.MAXIMUM HOVERHEIGHTIGE(dualenqine): Thisvalueis for determining maximumhoverheightwhenaircraftGWTexceedsmaxallowable GWTOGE;you do not havethe powerto hoverOGEor makeit to 55 feet. 12.PREDICTED HOVERTORQUE(dualenqine): 10foothover,dualengine,usingtakeoff Thisis the estimated torquerequiredfor a stationary GWT,PA,and FAT.The aircrewcomparesthe actualhovertorqueagainstthisvalueon the DA Form5701-60-R in an effortto validateactualtakeoffweight.Forexternalloadoperations, recordthe predicted torquerequiredto hoverat a heightthatwillplacethe loadat approximately 10feetAGL. NOTE value,it couldbe lf the actualhovertorqueis notequalto the predicted attributed to someof thefollowingconditions: ::e' r Wasthe 365-4reviewed? lf the a. Theaircraftweightis not as predicted. and is still 365-4, the actual hover torque correctweightwas usedfromthe predicted, the aircrewcanworkthe hoverchartbackwards differentthan .r r r..to iietermine th€ curr€ntweight. i'-'.- i i ,!:,' , , of the DA conditions havechangedsincethe computation b. Environment and Form5701-60-R. Hovervaluesare basedon zerowindconditions Hoveringoverotherthan strongwindscan affecthoverperformance. level,smoothsurfacescan alsoaffecthovertorque.Ref.TM 1-1520-23710,page7-11figure7-4 NOTEand page7-9 paragraph7.14.a. c. Makingan errorderivingthisvaluefromthe chart. problems. d. Aircraftmaintenance - IAS- WO / W STORES: 13.MINSE AIRSPEED whereconsideration shouldbe givento an IGE Thisis theairspeedvaluefor OGEconditions takeoffif conditionsmerit. 14.ZEROFUELWEIGHT: Thezerofuelweightis necessary for dynamicupdatesof the DA Form5701-60-R when required. DESclarification: ZEROFUELWEIGHT The DA Form5701-60-R powermanagemenU wasdeveloped to aid in increasing poweravailable awareness. Oneof the criticalcomponents of thisphilosophy is Zero FuelWeight.Whencomputedproperly,thiswill giveyouthe weightof the aircraftat anygiventime.Usingthe Zero FuelWeightfromthe DD Form365-4 may not be accuratedue to the useof standardized weightsusedfor DD Form 365-4calculations. In orderto determine thetrueZeroFuelWeight,the items neededto computethisshouldbe gatheredduringthe hovercheckand calculatedon the ground,or if not practical,shortlyaftertakeoffor leveloff. TC 1-237statesthatwhenDA Form5701-60-Ris requiredit will be completedin its entirety. Thiscomputation mustbe completed eachtimeDA Form5701-60-R is requiredIAWTC 1-237. REMARKSSECTIONOF THE PPC EMERGENGY SE.IAS: Do notconfuseSE cruisespeedin the CruiseDatasectionwithemergency SE lAS.The emergency single-engine airspeedis the speedusedimmediately following an emergency that requiresadjustment to the airspeed. Single-engine cruisespeedandassociated datais usedin pre-mission planning. ln the eventan enginefails,malfunctions or mustbe shutdownand SE operations (suchas overwater,jungle,denselyforested are possiblebut landingis not practical areas,mountainous terrainor otherimpractical landingareas),the SE cruisespeedmay be usedafterestablishing emergency SE airspeed. EMERGENCY SE-IASis theemergency SE airspeedbasedon engineperformance/capability and briefedto the crew for the purpose of crew coordination.Carefulconsideration shouldbe givento usingan airspeedthatis closeto the M.AX'SElAS.The reasonfor this is thatwe are keepingkineticenergyin the rotorsystem shnt:ldwe neeclit. lt is rnoredifficultto aecelerate SE:shor;lc! weneed.thespeed.Cncewe hav assessedthe situationand takencareof the emergencywe canalwaysslowdownif so desired. CRUISEDATA 1. fr Selectedbasedon missionrequirements 2. FAT:TakenfromyourDD From175-1orequivalent 3. MIN/ MAX- IAS (dualensine): Thisvalueis definedas the lowestand highestspeedattainedlevelflightfor a specificaltitude, The MAX weight,configuration, and powersetting.The MINIASis usuallyzerofor dual-engine. of grossweightarc and IRPor the XMSN IASlevelflightairspeedis obtainedat the intersection torquelimit,whicheveris lower.Thisshouldnot be confusedwithVh, whichusesmaximum continuouspower. 4. GRUISESPEEDIAS/ TAS (dualenqine): Cruisespeedis dictatedby the missionor chosenby the pilotwithinaircraftlimits.IASis the for standardatmospheric thathasbeencalibrated airspeedas shownon the airspeedindicator for airspeedsystemerrors. conditionsat sea leveland is uncorrected NOTE (CAS) airspeedcorrected for positionand indicated is the Calibrated airspeed instrument error.CASwouldbe equalto trueairspeedat standard at sea level.lf desired,CAScan be foundby referring atmospheric conditions to the CAS placardlocatedin the aircrafton the lefthandsideof the lower betweenIASand CASis notenoughto be considered console.The difference significant. The -10 statesthat IAScan be directlyconvertedto TAS on the Ref.TM 1-1520-237-1O, chartwithoutregardfor theotherchartinformation. page7-13,paragraph 7.17a. in the absenceof airspeedis not applicable TAS is calibrated airspeed(equivalent for errordueto densityaltitude.Sincethe airspeedindicatoris compressibility effects)corrected to airspeeds at sea levelconditions, corresponding calibrated for the dynamicpressures variations mustaccountfor air densityotherthanstandard. the cruise to usefor the DA From5701-60-R, Whendetermining whatairspeed(dual-engine) IASplannedfor the majorityof the flightshouldbe used.Thiswillprovidethe bestestimateof 120KIASis commonly usedin line operation, fuelflow(burnrate)perhour.Fordual-engine generally on fuel usedin flightschool;howeverthisvariesdepending unitsand 100KIASin (i.e.ExtendedRange andaircraftconfiguration requirements, missionrequirements, endurance FuelSystemor ERFS.) 5. MAXTORQUEAVAILABLE(dualenqine): Thecruisechartshavefixed Thistorqueis computedusingplannedcruiseairspeed. chart,whichhasunlimited unlikethe MaxTorqueAvailable temperature and PA combinations, in manycases,the cruisechartsare more However, temperature and PA combinations. of addingram air effect. accuratedue to the computation data NOTE:The IRPvaluesfoundin the cruisechartsfor the-10 andthe tabularperformance of the -CL are adjustedfor torqueratio. 6. CRUISETORQUE/ CONTTORQUEAVAILABLE: CRUISETORQUEis simplythetorquerequired to maintainyourdesiredcruiseairspeedfor yourgivenweightandconfiguration. CRUISETORQUEshouldneverexceedCONTTORQUE AVAILABLE. lf missionairspeedis closeto our CONTTORQUEAVAILABLE, increased drag by a slingload,an opendoor,turbulence, or theaircraftoutof trimcannowcauseus to be operating aboveour CONTTORQUEAVAILABLE. CONTTORQUEAVAILABLE / MAXCONTPOWERis the mosttorquethe enginescan producecontinually and remainoutof the 30 minuteengineoperating limitations. Thisis the MCPlinein the cruisechartsin chapter7 of the-10.Theaircraftwillbe at the top of one or moreof thecontinuous ranges:1)TGT-775"C;2)Ng- 99o/oi 3) Engoiltemp135"C.As the . nameimplies,thereis no timelimiton maintaining thistorque. Usesof continuous torque: Continuous torquemaybe of valueto the aircrewif fueleconomyis nota concernandthe aircrewwantsto makean extendedclimbof severalthousand feet,whilemaintaining a given airspeedand remaining you out of any3O-minute limits.Remember that maybe in your30minutelimitsbasedon engineanti-iceand heaterusage. Foranotherapplication, perhapsthe aircrewis on an IFRflightenrouteto a destination and ATCadvisesthe crewto climbto a higheraltitude.lf thereis morethan1000feetto climb,the pilotshouldclimbat an optimumrateconsistent withaircraftcapabilities untilwithin1000feetof the assigned altitude.By utilizingMAXCONTPOWER,the aircraftcouldclimbat an optimum rate(notwithin30-minute limits)whilestillmaintaining theairspeed filedon theflightplan. NOTE Usethe samevaluesyouusedin IRPadjustments (minus16%engineanti-ice on and minus4o/o heateron.)Example: Youare planninga 2 hourIFR mission.Youplanto usethe heaterandengineanti-ice,butyounoticethat whensubtracting 20o/o thiswillput cruisetorquewiththe 3O-minute timelimit ranges.Carefulconsideration by the crewmustbe givento the useof eachof thesesystemson the aircraft. Bleedair reducestorqueavailable fromthetop endof lRP.Cruiseandhovertorquerequired, remainunaffected. Whythendo we adjustMAXCONTPOWERfor bleedair operation? When bleedair is takenfromtheengines,theyoperatelessefficiently andresultin higherTGT'sto producethe sameamountof torqueas withoutbleedair. 7. CRUISEFUELFLOW: Thisis the predicted fuelflow(burnrate)thattheaircraftshouldhaveat cruisetorque.Notethat the cruisefuelflow requiresa relativelyconstanttorquesettingto be accurate.Aircraftflyingin the rearof formations typicallyconsume50 to 100lbs/hrmorethanpredicted. Thiswillvary depending on theformation positions. sizeandaircrewproficiency in maintaining formation SE fuelflowvaluesare derivedfromhalfthe amountof the torquerequiredsincethe burnratesat thetop of the chartsarefor dualengine.Don'tget caughtshort on multi-shipmissionsl Fuel Flow Gorrections(dualengine)T-700Engine: a. Enganti-iceon: About60 lbs/hr b. Heateron: About20 lbs/hr c. Bothon: About80 lbs/hr page7-153,paragraph Ref.TM 1-1520-237-10, 7.26 and the bafflesremoved,the dualengine systemis installed In addition, whenan lR suppressor fuelflowwilldecreaseabout16 lbsihr,8 lbs/hrSE (T-700.)The decreasein exhaustback pressureimprovesengineefficiency. 8. MAXRANGEIAS/ TORQUE(dualenqine): Thisis definedas the speedwhichyieldsthe maximumnauticalmilesper poundof fuelfor a weight,andaltitude.The maximumratelines(MAXRANGE)indicatethe specificconfiguration, combinations of grossweightandairspeedthatwill producethegreatestflightrangeper pound Thisis a goodvalueto usefor planningwhenthe missionwill of fuelunderzerowindconditions. not allowlargefuel reservesbetweenrefuelingstops.A methodof estimatingmaximumrange speedin windsis to increaseIASby 2.5 knotspereach10 knotsof effectiveheadwind(which lossin range)and decreaseIASby 2.5 knotsper 10 knotsof reducesflighttimeand minimizes effective tailwindfor economy.Thisairspeedcanalsobe usedas the maximumturbulence page penetration airspeed,providedit is lessthanVneminus15 knots.Ref.TM 1-1520'237-10, 8.41.2. 8-26,paragraph L IAS/ TORQUE(dualenqine): MAX ENDURANGE for a specific Thisis definedas the speedwhichyieldsthe minimumfuelflowattainable willgive IAS/TORQUE MAX ENDURANCE configuration, weight,andaltitude.Simplystated, pound of fuel. youthe mostHOURSof flighttimeper for a givengrossweight. of IASandtorquenecessary is a combination Maximumendurance is a minimum,providing a minimumfuelflow Thetorquerequiredfor levelflightat thiscondition rateof for climb(maximum (maximum anda maximumtorquechangeavailable endurance) longest straight levelfor the aircraft to fly and the will allow IAS climb.)The MAXENDURANCE periodof time(timealoftor loitertime)dueto the lowestfuelburnrate.Thisairspeedwill at a torquevaluethatprovideslevelflight. produceMAXENDURANCE onlywhenoperating Perhapsthereis mightbe usedfor thefollowing: IAS/TORQUE MAXENDURANCE the mountainous terrainto clearalongthe route.By enteringthe chartat a givenairspeed, The for flightplanningpurposes. groundspeedand estimated timesenroutecouldbe computed the excesspowerbetweenCRUISETORQUE rateof climbcouldbe computedby determining Thisexcesspowervalueis and IRPfor the airspeedselected(lRPminusCRUISETOROUE.) -10 pages7-151and7-152)to (Fig. 7-33 and 7-34 on chartsin the usedin the Climb/Descent timeto reachthe desiredaltitude.Keepin computea rateof climbas wellas an approximate and PA changeduringthe climb,so doesMAXCONTPOWERandior mindthatas temperature ,diiupreed: IASchangestti MAXR/C IASwhertappiyitlg MAX'ENDURANCE Aiso,ciuiiiig,a<;lirnb MaximumTorqueAvailable. 10.CRITICAL TORQUE(dualenqine): maynotallowthe aircraft CriticalTorqueis the dualenginetorquevalue,whichwhenexceeded, in the sameflight operations to maintain% RPMR withinnormallimitsundersingle-engine of aircraftdemands awareness to aid in situational conditions. CriticalTorquewas incorporated vs. aircraftcapabilities. thatrequiretorquesettingsgreaterthancriticaltorque flight,conditions Duringdual-engine capability of the lowETFengine.lf pilot outsidesingle-engine is operating indicatethatthe or mustbe dual-engine abovethe criticaltorqueandthe enginefails,malfunctions, operating andiorgrossweightto establish adjusttorque,airspeed, shutdown,the pilotmustimmediately levelflight. single-engine 11. MA_X AI-LOWABLEGWT& OPTIMUMAIRSPEEDAT MAXALLOWABLEGWT(dual enqine):Thiswill providethe aircrewwithan airspeedvalueto fly as quicklyas possin6to the destination, whileremaining outof any30-minute limitsor the lowestpossible TGT.Thisis a morepracticalpre-mission planningvaluethat mayprovemoreusefulto the aviator.lt also helpsfor planningadjustments of lAS,weight,andaltitudeby providing increased situational awareness of missionrequirements. 12.MAXR/CIAS/ TORQUE: Thisis the airspeedthatallowsthe aircraftto climbfromonealtitudeto a higheraltitudein the leastamountof timewhenusinglRP. NOTE Althoughthe aircraftmay be at the MAXRyCairspeed,it will onlyproducea maximumrateof climbif IRPis utilized. Anytorquesettinglessthanthe maximumwill producethe bestrateof climbperformance for the power applied.The MAXR/Cairspeedwillalwaysbe the lowesttotaldragairspeed. Remember thatthisairspeedis simplyMAXENDUMNCEairspeedcorrected for our pitotstatic systemerror.We determinethe amountof correctionin chapter7 of the -10 basedon howfast (or slow)we can climb.Thefollowingis a briefexplanation of why MAXR/Cairspeedneedsto be correctedfor the differentratesof climb. To minimize sensingerrors,the pitottubesarein a locationthatallowsminimumdisturbance of air causedby aircraftmotion.An errorresultsfromclimbslessthan1400fpmandwillresultin a lowerindicated airspeed. Climbsgreaterthan1400fpmwillresultin higherindicated airspeed. Thesepitottubesensingerrorsoccuras a resultof disturbed airflowin andaroundthe pitot tubes. 13.MAXALTITUDE- MSL: Thisis the maximumaltitudetheaircraftcanfly at MAXENDURANCE IASfor itsgivenweight, configuration, and ETF/ATF. 14.MIN/MAX- IAS (sinsleensine): This is a veryimportantblock,but unfortunately, it oftenreceivesverylittleattentionby aircrews. Forexample,a rapidapplication of collective by flightleadduringmulti-ship operations is a greatexampleof this.Enginefailuresare uncommon in the Blackhawk, buttheconsequences canbe undesirable andare avoidable duringcertainflightmodes.Quickapplication of these .rvalues'willoften makethe differencebetweenflyingaway.toa safelanding,r:r.r"nerely extending yourglidepathto the crashsite.Keepingyourairspeedbetweenthesetwo valuesin a singleenginesituation is critical. MINSE IASis the minimumairspeedpossible withoutlosingaltitudeduring-single engine operation. At the MINSE lAS,theaircraftwouldbe operating at IRPandTGTwouldhave reachedTGTlimiting(a functionof the ECU.)Remember thatif the derivedairspeedis less than40 KIAS,theindicated (ref.TM 1-1520-237-10, airspeedwillbe unreliable pageT-150, paragraph 7.27.1NOTE.) MAXSE IASis the maximumairspeedpossible withoutlosingaltitudewitha singleengine operating. lf the derivedmaximumairspeedexceeds130KIAS,youmustuse 130KIASper chapter5 limits.lf at the MAXSE IAS(below130KIAS)theaircraftwillbe usingthe maximum poweravailable, youwillbe in theTGT3O-minute limitandTGTwouldalsobe at the limiter L1, temperature for the ECU.lf the aircraftis operatingabovethe MAXSE IASwhenan engine fails,rotordroopwilloccurquickly.Delayedpilotreactionin slowingthe aircraftdownwill result notto operateat terrainflightaltitudes in rotorbleed-off andaltitudeloss.lt is a goodtechnique to recoverin the eventof abovethe MAXSE lAS.Thisis dueto the minimalaltitudeavailable an aircrewbeingslowto recognizethe enginefailureand/orreactiontime to the emergency. (RPM<96%) by the timethe low-rotor Remember, rotorRPMhasalreadydecayedsignificantly not respond in time.Boththe min may be able to audioactivates andeventhe sharpestcrew Do notassumethatflightis notpossiblebelowthe and maxairspeeds arefor OGEaltitudes. belowthe MINSE IASand/orhoveringflightmay be MINSE lAS.lf operatinglGE,airspeeds possible. 15.GRUISESPEEDIAS/ TAS(sinqleenqine): In determining SE cruisespeed,the aviatorhasthe optionof choosinganyspeedthatfalls withinthe MIN/MAXSE speedrange.lf missionairspeedfallswithinthisrangeanddoesnot causeIRPconditions, commonsensetellsus to useour missionairspeed.lf we cannot we shouldselectan airspeedthatis more maintainour missionairspeedwithoutIRPconditions, Thiscouldmeansimplyslowingdownby a few knotsor suitableto engineperformance. possiblyusingour MAXENDURANCE lAS.lf we are so heavythatwe canonlyuseour MAX thatwe couldnowbe in a forcedbutcontrolled ENDURANCE lAS,it shouldbe understood need to be foundif a loweraltitudedoesnotallowus descentanda suitablelandingareamay continued flight. 16.MAXTORQUEAVAILABLE(sinqleensine): Thistorqueis computedusingplannedsingleenginecruiseairspeed. 17.GRUISETORQUE/ GONTTORQUEAVAILABLE(SINGLEENGINE): givenin item6. of CruiseData Thisitemgenerally followsthe explanation 18.CRUISEFUELFLOW(sinqleenqine): Sincethe basicconcdptis the sameas dualengine,seeitem7. 19.MAXALLOWABLEGWT& OPTIMUMAIRSPEEDAT MAXALLOWABLEGWT(sinqlE enqine):Thisis the maximumweightthatoneengineis capableof poweringin levelflight.This attention to whetheryouwill be weightis basedon the weakerengineETF.Payparticular flying weight value. lf at a aboveMAXALLOWABLE this operating dualengineat weightsabove poweror a descent landing with descentand GWTSE,an enginefailurewillforcea controlled in the normalrange.FlyingaboveMAX to a loweraltitudeif RPMR is to be maintained prucess.lf the fligltiis in the riskmanagernent ALLOvVATLE GVVTSE sfrouldbe considered increasethe risk terrain,suchconditions overwateror heavilywoodedand/ormountainous involved witha forcedlanding. 20. MAXALLOWABLEGWT& OPTIMUMAIRSPEEDAT MAXALLOWABLEGWT(siNgIE enqine): Sincethe basicconceptis the sameas dualengine,seeitem11. 21.MAXANGLE: of figure5-8,whichis usedto the application for Vnediscusses Itemb of the sameparagraph produce will likely that bladestall.Whilethe determine of bankcombinations airspeed/angle -10 prohibits the expressly anymaneuvering airspeed/angle chartis notan aircraftlimitation, vibration. increasein.4per revolution whichresultsin severebladestallanda significant 12 Compressibility is givenconsideration by referringto figure5-8 in the -10. Notethat any airspeed belowthedashedlineslabeled"machlimits"couldresultin compressible flowoverthe advancing blades.Notethatthisshouldnot be a problemfor temperatures above-10"C.Lastly, aircraftstructural damageand/orcomponent failureis a possibleoutcomeif the aircraftexceeds Vneduringflight. 22.VELOCITY NEVERTO EXGEEDffne): Themaximumpermittedairspeedas a functionof temperature, PA,and weight.Thisairspeed cannotbe attainedin levelflight.The aircraftwill haveto be in a dive/descent to achievethis speed.Exceeding thisspeedmaycausethe aircraftto encounterthe effectsof retreatingblade stall,compressibility, and/oraircraftstructuraldamage.Retreatingbladestallhasnot been encountered in oneG flightup to the airspeeds shownon the Vnechartin chapter5 of the -10. Notethatretreatingbladestallmaybe encountered at airspeedsmuchlessthanVnewhen maneuvering or encountering turbulence. Ref.TM 1-1520-237-10, page5-18,paragraph 5.23.3.a REMAINING ENVIRONM ENTALCONSIDERATIONS MODERATE TURBULENCE: Formoderate turbulence, limitairspeedto MAXMNGE airspeedor Vne minus15 knots, whichever is less.The 15knotspeedreduction fromVnereducesthe likelihood of the pilot exceeding Vnedueto airspeedfluctuations associated withturbulence. Dueto these fluctuations in airspeedindications, maintaining a constantpowersettingand levelattitudewill ensurea relatively constantairspeed. page8-26,paragraph Ref.TM 1-1520-237-10, 8.41.2 13
© Copyright 2024