Rechargeable Batteries, Old and New John B. Goodenough The University of Texas at Austin Modern Society is enabled by the chemical energy stored in fossil fuels. Unsustainable Cost • National vulnerabilities from uneven, finite distribution • Spoiled environment by extraction • Air pollution and global warming by use Sustainable Energy Supply • Generation of electrical energy by wind, solar, nuclear, and other sources • Storage of electrical energy at an acceptable cost • What is the status of rechargeable batteries? Electrochemical capacitors? Battery Principle Chemical Energy (in electrodes) I, V Δt Electrical Energy (P=IV for Δt) Rechargeable Electrochemical Cell: Pcharge > Pdischarge Battery=Stack of cells connected in series to increase V, in parallel (or electrode area) to increase I=dq/dt and/or Δt. Challenges: Cost, Safety, Energy Density, Life, Rate. Traditional Rechargeable Cells ‐ e‐ e‐ Separator + NiO6/3 layer M2+ Reductant H+ Oxidant Anode Electrolyte Cathode Anode H+ H+ NiOOH KOH + 2H2O H SO Cd(OH)2 + 2 H+ + 2e‐ 2 4 0 Pb + H2SO4 PbSO4 + 2H+ + 2e‐ Cd0 Cathode + H+ + e‐ KOH NiOOH Ni(OH)2 H2SO4 + ‐ PbO2 + H2SO4 + 2H + 2e PbSO4 + 2H2O TYPICAL BATTERY DISCHARGE Vdis Voc dis (i) (ii) (iii) I Vdis = Voc − ηdis(I,q) Vch = Voc + ηch(I,q) Relectrolyte = (dV/dI)ii Cell Energy at Constant I = dq/dt Energy = ∆ ; ∆ Q(I)/wt or vol = specific or volumetric capacity V(q) = VOC – η(q, I); VOC = (μA – μC)/e ≤ electrolyte Eg VV V V η VV VOC η Diffusion‐limited (end of life) (i) (ii) VOC Two Phase (iii) t or q t or q t or q t or q η(q, I) increases with resistance to working-ion current Problem: Maximize VOC, Q(I) and # cycles to Q/Q0 = 0.8; minimize η Electrolyte Aqueous Electrolyte: Eg = 1.23 eV • LUMO = H2O/H2; HOMO = O2/H2O Kinetic Stability • NiOOH/KOH/Cdo Voc = 1.5 V Limited Life • PbO2/H2SO4/Pbo Voc = 2.0 V First Li-ion Battery E EF(Li) LUMO 1.1 eV 2.6 eV S2‐:3p6 4 eVoc 3.2 eV Co4+/Co3+ 0.3 eV O2‐:2p6 HOMO Li1‐xCoO2 Electrolyte, Separator LixC LiCoO2//C Cell Separator SEI layer LixC6 Li1‐xCoO2 Lix[M2]O4 Spinel Electrodes O2‐ 16d 8a Lix[Mn2]O4 16c a0 2 quadrants of structure Edge‐shared MO6/5 octahedra 3D Li+ insertion into close‐ packed oxygen array Note: Li1+x[Li1/3Ti5/3]O4: V=1.5 V Li1‐x[Ni0.5Mn1.5]O4: V=4.7 V Ni(II) Ni(IV) with little step NASICON Framework Na1+3xZr2(P1-xSixO4)3 LixFe2(SO4)3: V =3.6 V LixFe2(MO4)3: M = Mo, W: V =3.0 V Na3-xV2(PO4)3: V = 3.4 V c NASICON a Capacity Challenge 5.0 5.0 4.5 4.5 Potential (V) vs. Li /Li Li1‐xCoO2 4.0 3.5 + + Potential (V) vs. Li /Li (Limited specific capacity further reduced by anode SEI layer) Li1‐xFePO4 3.0 2.5 4.0 3.5 3.0 Lix[Mn2]O4 2.5 2.0 1.5 Li1‐x[Ni0.5Mn1.5]O4 LixTiS2& Li2[Ti2]S4 0 50 100 Capacity (mAh/g) 150 200 2.0 0 50 100 150 200 Capacity (mAh/g) 250 300 ELECTRODE MATERIALS MO2 Li MO2 Li MO2 Li MO2 LUMO Na2MnFe(CN)6 and Na3V2(PO4)3 : V 3.4 V, Q(10C) > 100 mAh/g Framework of Prussian Blue Analogues Anode Problem with Organic Liquid Electrolyte • An EF (Anode) > LUMO requires an SEI • SEI on Li0 or Na0 creates dendrites, so C anode • Need VCh < Vplate, so C-buffered alloys • Need SEI permeable to Li+ or Na+: if Li+, Na+ come from cathode, get capacity loss on initial charge. • Reforming SEI gives capacity fade limiting cycle life • SEI slows Li+ or Na+ transfer Separators • Celgard membrane: penetrated by dendrites; insertion-compound cathode • Polymer-gel membranes: blocks dendrites; adds choice of liquid flow-through cathode • Anode/Solid-electrolyte interface: prevents dendrites, allows choice of sulfur or liquid flowthrough and air cathode if solid electrolyte stable in alkaline water Al2O3/PEO Separator (K.S. Park, J.-H. Cho, C.J. Ellison Oxide: Dried (400C) Al2O3 Powder (300-400nm) Polymer: DEGDVE = Di(ethyleneglycol) divnylether with ethylneoxide (EO) units PETT = tetrathiol crosslinker Preparation: AIBN = thermal initiator (80C, 4h) Yield: Quantitative, homogeneous network AIBN = Azobisisobutyrolnitrile PEO/Al2O3 Composite-Membrane Separator K. Park et al. Photographs of a PEO/Al2O3 (2/1 in weight) composite membrane (25 20 cm2) Mechanical Stability • Tensile test shows a good mechanical stability, especially after Al2O3 incorporation. • Stability against Li dendrite Minor surface dent by Li dendrite After full charging It blocks Li dendrite. Presence of Osmosis • Presence of concentration gradient of a redox-molecule across the PEO/Al2O3 membrane • Balancing the concentrations between catholyte and anolyte is necessary, for example, with high-molecular-weight Ionic liquids and PEGDME. Charge/Discharge Cycle Property Anolyte: 1M LiTFSI in EC.DEC w/0.1M PEGDME 500 Catholyte: 1M LiTFSI in EC/DEC w/0.1M 6-Bromohexyl ferrocene PVDF‐HFP: Widely used as host for gel‐polymer electrolytes But with unsatisfactory mechanical strength Glass‐fiber paper: Used to enhance the mechanical properties Polydopamine: Biomimetic polymer of mussel adhesive protein Polymerized at room temperature in aqueous solution Modify the surface properties of PVDF‐HFP -1 Specific Capacity (mAh g ) 0.2 C 0.5 C 1C 2C 120 0.5 C 80 GF/PVDF-HFP/PDA GF/PVDF-HFP Glass fiber 40 0 0 10 20 30 40 50 Cycle number The composite membranes have good thermal stability and mechanical strength. Gel‐polymer electrolytes: Improve rate and cycle performance of air‐dried cathode of Na2MnFe(CN)6 Hongcai Gao, et al. Adv Energy Mater 2015 Strategy for an Alkali-Metal Anode cathode cathode Li+/Na+ Separator membrane Separator membrane Current collector Solid electrolyte Current collector Cost Targets • Cycle Life N > 10,000; calendar life 10 years • Simple processing of inexpensive materials. • Increased VQ(I) to reduce number of cells. • Simplify battery management Lithium-Sulfur Batteries
© Copyright 2024