Section 5.2 ANSWERS C H A P T E R 5 Trigonometric Functions 5.1 Assess Your Understanding (page 366) 3. Standard position 4. ru; 11. 1 2 s ¨ r u 5. ; 2 t t 6. F 7. T 8. T 12. 9. T 10. F 13. 14. 135 120 30 60 15. 16. 540 17. 450 19. 20. – 6 18. 4 3 3 4 21. 16 3 22. 21 4 – 2 3 23. 40.17° 24. 61.71° 25. 1.03° 26. 73.68° 27. 9.15° 28. 98.38° 29. 40°1912 30. 61°1424 31. 18°1518 32. 29°2440 p 2p 4p 11p p p 3p 3p 5p p 33. 19°5924 34. 44°036 35. 36. 37. 38. 39. 40. 41. p 42. 43. 44. 45. 6 3 3 6 3 6 2 4 4 2 46. –p 47. 60° 48. 150° 49. 225° 50. –120° 51. 90° 52. 720° 53. 15° 54. 75° 55. –90° 56. –180° 57. –30° 58. –135° 59. 0.30 60. 1.27 61. 0.70 62. –0.89 63. 2.18 64. 6.11 65. 179.91° 66. 42.97° 67. 114.59° 68. 171.89° 69. 362.11° 4 p L 1.047 in. 78. 2p≠6.283 m 70. 81.03° 71. 5 m 72. 12 ft 73. 6 ft 74. 24 cm 75. 0.6 radian 76. ≠1.333 radians 77. 3 3 4 p L 1.047 in¤ 79. 25 m¤ 80. 36 ft¤ 81. 2 13≠3.464 ft 82. 4 13≠6.928 cm 83. 0.24 radian 84. ≠0.444 radian 85. 9 3 86. 3∏≠9.425 m¤ 87. s=2.094 ft; A=2.094 ft¤ 88. s=2.094 m; A=4.189 m¤ 89. s=14.661 yd; A=87.965 yd¤ 3p 40p 90. s=7.854 cm; A=35.343 cm¤ 91. 3p≠9.4248 in.; 5p≠15.7080 in. 92. ≠13.9626 in. 93. 2∏≠6.28 m¤ 94. ≠4.71 cm¤ 9 2 675p 72 1 1 1 1 95. ≠1060.29 ft¤ 96. ≠4.58° 97. v = radian/sec; v= cm/sec 98. v= radian/sec; v= m/sec 2 5p 60 12 8 4 99. Approximately 452.5 rpm 100. Approximately 282.7 in./sec; approximately 16.1 mi/hr 101. Approximately 359 mi 102. Approximately 554 mi 103. Approximately 898 mi/hr 104. Approximately 794 mi/hr 105. Approximately 2292 mi/hr 3 106. Approximately 66,633 mi/hr 107. rpm 108. Approximately 2.69 ft/sec; approximately 0.09 radian/sec 4 109. Approximately 2.86 mi/hr 110. Approximately 37.13 mi/hr; approximately 1034.26 rpm 111. Approximately 31.47 rpm 112. Approximately 5.8 min 113. Approximately 1037 mi/hr 114. Approximately 1.15 mi 115. radius ≠3979 miles; circumference ≠25,000 miles 116. v1=r1◊1, v2=r2◊2, and v1=v2, so r1◊1=r2◊2 1 r1 v2 = . r2 v1 5.2 Assess Your Understanding (page 384) 1 13 13 2 13 13 1 9. T 10. F 11. sin t= ; cos t= ; tan t= ; csc t=2; sec t= ; cot t= 13 12. sin t=; cos t= ; 2 2 3 3 2 2 2 13 13 121 2 121 5 121 5 tan t=- 13; csc t=; sec t=2; cot t=13. sin t= ; cos t=- ; tan t=; csc t= ; sec t=- ; 3 3 5 5 2 21 2 2 121 1 16 12 216 5 16 12 cot t=14. sin t= ; cos t=- ; tan t=- 2 16; csc t= ; sec t=–5; cot t=15. sin t= ; cos t=; 21 5 5 12 12 2 2 12 12 tan t=–1; csc t= 12; sec t=- 12; cot t=–1 16. sin t= ; cos t= ; tan t=1; csc t= 12; sec t= 12; cot t=1 2 2 7. 3 2 8. 0.91 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall AN93 AN94 ANSWERS Section 5.2 1 2 12 12 3 12 2 15 2 15 17. sin t=- ; cos t= ; tan t=; csc t=–3; sec t= ; cot t=- 2 12 18. sin t=- ; cos t=; tan t= ; 3 3 4 4 3 3 5 3 3 15 15 1 csc t=- ; sec t=; cot t= 19. –1 20. –1 21. 0 22. 0 23. –1 24. 1 25. 0 26. 0 27. –1 28. 0 29. (12 + 1) 2 5 2 2 1 1 13 2 13 1 30. (1 - 12) 31. 2 32. –1 33. 34. 35. 16 36. 37. 4 38. 8 39. 0 40. 12 + 3 41. 0 42. 13 + 2 2 2 3 2 4 13 2p 13 2p 1 2p 2p 2 13 = = - ; tan = - 13; csc = 43. 2 12 + 44. 2 13 + 1 45. –1 46. –1 47. 1 48. –2 49. sin ; cos ; 3 3 2 3 2 3 3 3 2p 2p 5p 1 5p 5p 5p 13 13 13 5p 2 13 5p = - 2; cot = ; cos = = = 2; sec = = - 13 sec =50. sin ; tan ; csc ; cot 3 3 3 6 2 6 2 6 3 6 6 3 6 1 13 13 2 13 51. sin 210°=- ; cos 210°=; tan 210°= ; csc 210°=–2; sec 210°=; cot 210°=13 2 2 3 3 13 1 2 13 13 52. sin 240°=; cos 240°=- ; tan 240°=13; csc 240°=; sec 240°=–2; cot 240°= 2 2 3 3 3p 12 3p 12 3p 3p 3p 3p 11p 12 12 11p = = - 1; csc = 12; sec = - 12; cot = - 1 54. sin = = 53. sin = ; cos ; tan ; cos ; 4 2 4 2 4 4 4 4 4 2 4 2 11p 11p 11p 11p 8p 13 8p 1 8p 8p 213 = 12; sec = - 12; cot = = - ; tan = - 13; csc = tan =–1; csc =–1 55. sin ; cos ; 4 4 4 4 3 2 3 2 3 3 3 8p 8p 13p 1 13p 13 13p 13 13p 2 13 13 13p 13p = - 2; cot = = ; cos = = = = 13 sec 56. sin ; tan ; csc =2; sec ; cot 3 3 3 6 2 6 2 6 3 6 6 3 6 12 12 57. sin 405°= ; cos 405°= ; tan 405°=1; csc 405°=12; sec 405°=12; cot 405°=1 2 2 2 13 1 13 13 58. sin 390°= ; cos 390°= ; tan 390°= ; csc 390°=2; sec 390°= ; cot 390°=13 2 2 3 3 13 213 p 1 p p 13 p p p 59. sin a - b = - ; cos a - b = ; tan a - b = ; csc a - b = - 2; sec a - b = ; cot a - b = - 13 6 2 6 2 6 3 6 6 3 6 p 13 p 1 p p 2 13 p p 13 60. sin a - b = ; cos a - b = ; tan a - b = - 13; csc a - b = ; sec a - b =2; cot a - b = 3 2 3 2 3 3 3 3 3 3 12 12 61. sin(–45°)=; cos(–45°)= ; tan(–45°)=–1; csc(–45°)=- 12; sec(–45°)= 12; cot(–45°)=–1 2 2 13 1 2 13 13 62. sin(–60°)=; cos(–60°)= ; tan(–60°)=- 13; csc(–60°)=; sec(–60°)=2; cot(–60°)=2 2 3 3 5p 5p 5p 5p 5p 5p 63. sin =1; cos =0; tan is undefined; csc =1; sec is undefined; cot =0 2 2 2 2 2 2 64. sin(5∏)=0; cos(5∏)=–1; tan(5∏)=0; csc(5∏) is undefined; sec(5∏)=–1; cot(5∏) is undefined 65. sin 720°=0; cos 720°=1; tan 720°=0; csc 720° is undefined; sec 720°=1; cot 720° is undefined 66. sin 630°=–1; cos 630°=0; tan 630° is undefined; csc 630°=–1; sec 630° is undefined; cot 630°=0 67. 0.47 68. 0.97 69. 0.38 70. 0.36 71. 1.33 72. 1.22 73. 0.31 74. 0.92 4 3 4 5 75. 3.73 76. 5.67 77. 1.04 78. 1.07 79. 0.84 80. 1.56 81. 0.02 82. 0.02 83. sin ¨= ; cos ¨=- ; tan ¨=- ; csc ¨= ; 5 5 3 4 5 3 12 5 12 13 13 5 sec ¨=- ; cot ¨=84. sin ¨=- ; cos ¨= ; tan ¨=- ; csc ¨=- ; sec ¨= ; cot ¨=3 4 13 13 5 12 5 12 3 113 2 113 3 113 113 2 2 15 15 85. sin ¨=; cos ¨= ; tan ¨=- ; csc ¨=; sec ¨= ; cot ¨=86. sin ¨=; cos ¨=; 13 13 2 3 2 3 5 5 15 1 12 12 tan ¨=2; csc ¨=; sec ¨=- 15; cot ¨= 87. sin ¨=; cos ¨=; tan ¨=1; csc ¨=- 12; sec ¨=- 12; cot ¨=1 2 2 2 2 12 12 2 113 3 113 2 88. sin ¨=; cos ¨= ; tan ¨=–1; csc ¨=- 12; sec ¨= 12; cot ¨=–1 89. sin ¨=; cos ¨=; tan ¨= ; 2 2 13 13 3 113 113 3 12 12 csc ¨=; sec ¨=; cot ¨= 90. sin ¨= ; cos ¨= ; tan ¨=1; csc ¨= 12; sec ¨= 12; cot ¨=1 2 3 2 2 2 3 3 5 4 4 3 5 4 5 4 91. sin u=- ; cos u= ; tan u=- ; csc u=- ; sec u = ; cot u = 92. sin ¨=- ; cos ¨=- ; tan ¨= ; csc ¨=- ; 5 5 4 3 4 3 5 5 3 4 5 3 2 13 3 13 1 1 13 sec ¨=- ; cot ¨= 93. 0 94. 95. –0.1 96. –0.3 97. 3 98. –2 99. 5 100. 101. 102. 103. 104. 3 4 3 2 2 2 2 2 3 1 13 1 13 1 105. 106. 107. 108. 109. 13 110. 1 111. 112. 4 4 2 2 2 2 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall Section 5.3 ANSWERS 113. u sin u sin u u 0.5 0.4794 0.4 0.3894 0.2 0.1987 0.1 0.0998 0.01 0.0100 0.001 0.0010 0.0001 0.0001 0.00001 0.00001 0.9589 0.9735 0.9933 0.9983 1.0000 1.0000 1.0000 1.0000 AN95 sin u approaches 1 as u approaches 0. u 114. 115. 118. 121. 123. u cos u-1 cos u - 1 u 0.5 –0.1224 0.4 –0.0789 0.2 –0.0199 0.1 –0.0050 0.01 –0.00005 0.001 0.0000 0.0001 0.0000 0.00001 0.0000 –0.2448 –0.1973 –0.0997 –0.0500 –0.0050 –0.0005 –0.00005 –0.000005 cos u - 1 approaches 0 as u approaches 0. u R≠310.56 ft; H≠77.64 ft 116. R≠1988.32 m; H≠286.99 m 117. R≠19,542 m; H≠2278 m R≠1223.36 ft; H≠364.49 ft 119. (a) 1.20 s (b) 1.12 s (c) 1.20 s 120. 4.90 cm; 4.71 cm (a) 1.9 hr; 0.57 hr (b) 1.69 hr; 0.75 hr (c) 1.63 hr; 0.86 hr (d) 1.67 hr; tan 90° is undefined 122. 251.42 cm‹; 117.88 cm‹; 75.4 cm‹ sin u - 0 (a) 16.56 ft (b) (c) 67.5 124. Since L and M are parallel, mL=mM= =tan ¨. 20 cos u - 0 45 90 0 125. (a) values estimated to the nearest tenth: sin 1≠0.8; cos 1≠0.5; tan 1≠1.6; csc 1≠1.3; sec 1≠2.0; cot 1≠0.6; actual values to the nearest tenth: sin 1≠0.8; cos 1≠0.5; tan 1≠1.6; csc 1≠1.2; sec 1≠1.9; cot 1≠0.6 (b) values estimated to the nearest tenth: sin 5.1≠–0.9; cos 5.1≠0.4; tan 5.1≠–2.3; csc 5.1≠–1.1; sec 5.1≠2.5; cot 5.1≠–0.4; actual values to the nearest tenth: sin 5.1≠–0.9; cos 5.1≠0.4; tan 5.1≠–2.4; csc 5.1≠–1.1; sec 5.1≠2.6; cot 5.1≠–0.4 (c) values estimated to the nearest tenth: sin 2.4≠0.7; cos 2.4≠–0.7; tan 2.4≠–1.0; csc 2.4≠1.4; sec 2.4 ≠–1.4; cot 2.4≠–1.0; actual values to the nearest tenth: sin 2.4≠0.7; cos 2.4≠–0.7; tan 2.4≠–0.9; csc 2.4≠1.5; sec 2.4≠–1.4; cot 2.4≠–1.1 126. (a) values estimated to the nearest tenth: sin 2≠0.9; cos 2≠–0.4; tan 2≠–2.3; csc 2≠1.1; sec 2≠–2.5; cot 2≠–0.4; actual values to the nearest tenth: sin 2≠0.9; cos 2≠–0.4; tan 2≠–2.2; csc 2≠1.1; sec 2≠–2.4; cot 2≠–0.5 (b) values estimated to the nearest tenth: sin 4≠–0.8; cos 4≠–0.7; tan 4≠1.1; csc 4≠–1.3; sec 4≠–1.4; cot 4≠0.9; actual values to the nearest tenth: sin 4≠–0.8; cos 4≠–0.7; tan 4≠1.2; csc 4≠–1.3; sec 4≠–1.5; cot 4≠0.9 (c) values estimated to the nearest tenth: sin 5.9≠–0.4; cos 5.9≠0.9; tan 5.9≠–0.4; csc 5.9≠2.5; sec 5.9≠1.1; cot 5.9≠–2.5; actual values to the nearest tenth: sin 5.9≠–0.4; cos 5.9≠0.9; tan 5.9≠–0.4; csc 5.9≠2.7; sec 5.9≠1.1; cot 5.9≠–2.5 127. (a) values estimated to the nearest tenth: sin 1.5≠1.0; cos 1.5≠0.1; tan 1.5≠10.0; csc 1.5≠1.0; sec 1.5≠10.0; cot 1.5≠0.1; actual values to the nearest tenth: sin 1.5≠1.0; cos 1.5≠0.1; tan 1.5≠14.1; csc 1.5≠1.0; sec 1.5≠14.1; cot 1.5≠0.1 (b) values estimated to the nearest tenth: sin 4.3≠–0.9; cos 4.3≠–0.4; tan 4.3≠2.3; csc 4.3≠–1.1; sec 4.3≠–2.5; cot 4.3≠0.4; actual values to the nearest tenth: sin 4.3≠–0.9; cos 4.3≠–0.4; tan 4.3≠2.3; csc 4.3≠–1.1; sec 4.3≠–2.5; cot 4.3≠0.4 (c) values estimated to the nearest tenth: sin 5.3≠–0.8; cos 5.3≠0.6; tan 5.3≠–1.3; csc 5.3≠–1.3; sec 5.3≠1.7; cot 5.3 = –0.8; actual values to the nearest tenth: sin 5.3≠–0.8; cos 5.3≠0.6; tan 5.3≠–1.5; csc 5.3≠–1.2; sec 5.3≠1.8; cot 5.3≠–0.7 128. (a) values estimated to the nearest tenth: sin 2.7≠0.4; cos 2.7≠–0.9; tan 2.7≠–0.4; csc 2.7≠2.5; sec 2.7≠–1.1; cot 2.7≠–2.3; actual values to the nearest tenth: sin 2.7≠0.4; cos 2.7≠–0.9; tan 2.7≠–0.5; csc 2.7≠2.3; sec 2.7≠–1.1; cot 2.7≠–2.1 (b) values estimated to the nearest tenth: sin 3.9≠–0.7; cos 3.9≠–0.7; tan 3.9≠1.0; csc 3.9≠–1.4; sec 3.9≠–1.4; cot 3.9≠1.0; actual values to the nearest tenth: sin 3.9≠–0.7; cos 3.9≠–0.7; tan 3.9≠0.9; csc 3.9≠–1.5; sec 3.9≠–1.4; cot 3.9≠1.1 (c) values estimated to the nearest tenth: sin 6.1≠–0.2; cos 6.1≠1.0; tan 6.1≠–0.2; csc 6.1≠–5.0; sec 6.1≠1.0; cot 6.1≠–5.0; actual values to the nearest tenth: sin 6.1≠–0.2, cos 6.1≠1.0; tan 6.1≠–0.2; csc 6.1≠–5.5; sec 6.1≠1.0; cot 6.1≠–5.4 5.3 Assess Your Understanding (page 399) 5. 2∏; ∏ 6. all real numbers except odd multiples of 12 12 20. 2 2 3 35. tan ¨=- ; cot ¨=4 18. 2 19. 21. 0 22. 1 p 2 23. 12 24. 1 4 5 5 ; sec ¨= ; csc ¨=3 4 3 7. [–1, 1] 25. 13 3 8. T 26. 9. F 10. F 11. 2 13 3 12 2 12. 1 2 27. II 28. IV 29. IV 13. 1 14. 1 2 15. 1 16. –1 30. I 31. IV 32. III 33. II 5 4 3 5 36. tan ¨=- ; cot ¨=- ; sec ¨=- ; csc ¨= 3 4 3 4 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall 17. 13 34. II AN96 ANSWERS Section 5.3 1 15 1 15 13 213 37. tan ¨ 2; cot ¨ ; sec ¨ 15; csc ¨ 38. tan ¨= ; cot ¨=2; sec ¨=; csc ¨=- 15 39. tan ¨ ; cot ¨= 13; sec ¨= ; 2 2 2 2 3 3 13 2 13 12 3 12 csc ¨=2 40. tan ¨= 13; cot ¨= ; sec ¨=2; csc ¨= 41. tan ¨=; cot ¨=- 2 12; sec ¨= ; csc ¨=–3 3 3 4 4 12 3 12 5 12 13 13 5 42. tan ¨=–2 12; cot ¨=; sec ¨=–3; csc ¨= 43. cos u = - ; tan u = - ; csc u = ; sec u = - ; cot u = 4 4 13 5 12 5 12 4 4 5 5 3 3 3 5 5 4 44. sin u=- ; tan u=- ; csc u=- ; sec u= ; cot u=45. sin u = - ; tan u = ; csc u = - ; sec u = - ; cot u = 5 3 4 3 4 5 4 3 4 3 5 12 13 12 13 13 12 5 13 12 46. cos u=- ; tan u= ; csc u=- ; sec u=- ; cot u= 47. cos u = - ; tan u = - ; csc u = ; sec u = - ; cot u = 13 12 5 12 5 13 12 5 12 5 3 3 5 5 4 212 3 12 12 48. sin u=- ; tan u=- ; csc u=- ; sec u= ; cot u=49. sin u = ; tan u = - 212; csc u = ; sec u=–3; cot u = 5 4 3 4 3 3 4 4 2 15 15 3 15 3 3 15 15 2 15 315 50. cos u=; tan u= ; csc u=- ; sec u=; cot u= 51. cos u = ; tan u = ; csc u = ; sec u = ; 3 5 2 5 2 3 5 2 5 15 115 4 115 115 13 1 cot u = 52. sin u=; tan u=115; csc u=; sec u=–4; cot u= 53. sin u = ; cos u = ; tan u = - 13; 2 4 15 15 2 2 213 13 1 2 12 12 3 12 3 4 csc u = ; cot u = 54. sin u= ; cos u=; tan u=; sec u=; cot u=- 2 12 55. sin u = - ; cos u = - ; 3 3 3 3 4 4 5 5 4 3 110 5 5 3 4 5 5 3110 csc u = - ; sec u = - ; cot u = 56. sin u=- ; cos u=- ; tan u= ; csc u=- ; sec u=57. sin u = ; cos u = ; 3 4 3 5 5 4 3 4 10 10 110 13 1 2 13 13 13 13 csc u = 110; sec u = ; cot u=–3 58. sin u=; cos u=- ; tan u=13; csc u=; cot u= 59. 60. 3 2 2 3 3 2 2 13 12 12 13 2 13 61. 62. 63. 2 64. –2 65. –1 66. 0 67. –1 68. 0 69. 70. 71. 0 72. 1 73. - 12 74. –1 75. 3 2 2 2 3 213 76. 77. 1 78. 1 79. 1 80. 1 81. 0 82. 0 83. 1 84. 1 85. –1 86. 1 87. 0 88. 0 89. 0.9 90. 0.6 91. 9 92. –6 3 p p 93. 0 94. –1 95. All real numbers 96. All real numbers 97. Odd multiples of 98. Multiples of p 99. Odd multiples of 2 2 100. Multiples of p 101. –1 y 1 102. –1 y 1 103. All real numbers 104. All real numbers 105. œyœ 1 106. œyœ 1 107. Odd; yes; origin 108. Even; yes; y-axis 109. Odd; yes; origin 110. Odd; yes; origin 111. Even; yes; y-axis 1 1 3 112. Odd; yes; origin 113. (a) (b) 1 114. (a) (b) 115. (a) –2 (b) 6 116. (a) 3 (b) –9 117. (a) –4 (b) –12 3 4 4 118. (a) –2 (b) 6 119. About 15.81 min 120. About 2.75 hr y = a. Then 121. Let a be a real number and P=(x, y) be the point on the unit circle that corresponds to t. Consider the equation tan t = x 1 a y=ax. But x2+y2=1 so x2+a2x2=1. Thus, x = ; and y = ; ; that is, for any real number a, there is a 21 + a2 21 + a2 point P=(x, y) on the unit circle for which tan t=a. In other words, the range of the tangent function is the set of all real numbers. x 122. Let a be a real number and P=(x, y) be the point on the unit circle that corresponds to t. Consider the equation cot t= = a. Then y 1 a 2 2 2 2 2 x=ay. But x +y =1 so a y +y =1. Thus, y=— and x=— ; that is, for any real number a, there is a 21 + a2 21 + a2 point P=(x, y) on the unit circle for which cot t=a. In other words, the range of the cotangent function is the set of all real numbers. 123. Suppose that there is a number p, 0<p<2p, for which sin(u+p)=sin u for all u. If u=0, then sin(0+p)=sin p=sin 0=0, p p p 3p p b = - 1 = sin a b =1. This is impossible. so p=p. If u = , then sin a + p b =sin a b . But p=p. Thus, sin a 2 2 2 2 2 Therefore, the smallest positive number p for which sin(u+p)=sin u for all u is 2p. 124. Suppose that there is a number p, 0<p<2p, for which cos(u+p)=cos u for all u. If u=0, then cos(0+p)=cos p=cos 0=1. But on the interval (0, 2p), cos p never equals 1. Therefore, the smallest positive number p for which cos(u+p)=cos u for all u is 2p. 1 1 125. sec u = ; since cos u has period 2p, so does sec u. 126. csc u= ; since sin u has period 2p, so does csc u. cos u sin u 127. If P=(a, b) is the point on the unit circle corresponding to u, then Q=(–a, –b) is the point on the unit circle corresponding to -b b = = tan u. Suppose that there exists a number p, 0<p<∏, for which tan(¨+p)=tan ¨ for all ¨. u+p. Thus, tan(u + p) = -a a Then, if ¨=0, then tan p=tan 0=0. But this means that p is a multiple of ∏. Since no multiple of ∏ exists in the interval (0, ∏), this is a contradiction. Therefore, the period of f(¨)=tan ¨ is ∏. Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall Section 5.4 ANSWERS AN97 1 128. cot u= ; since tan u has period p, so does cot u. 129. Let P=(a, b) be the point on the unit circle corresponding to ¨. tan u a 1 1 1 1 1 1 = = Then csc ¨= = ; sec ¨= = ; cot u = . b ba tan u a cos u b sin u cos u b sin u a 130. If P=(a, b) is the point on the unit circle corresponding to ¨, then tan ¨= = , and cot ¨= = . b sin u a cos u 2 2 2 2 2 2 2 2 131. (sin ¨ cos Ï) +(sin u sin Ï) +cos ¨=sin ¨ cos Ï+sin ¨ sin Ï+cos ¨ =sin2 ¨(cos2 Ï+sin2 Ï) ± cos2 ¨=sin2 ¨+cos2 ¨=1 5.4 Assess Your Understanding (page 414) p p ∏ ∏ x + 2∏k, k any integer 4. 3; ∏ 5. 3; 6. T 7. F 8. T 9. 0 10. 1 11. 12. 0 x p 13. 1 14. –1 2 2 3 2 p 3p 3p p p 3p , ; sin x=–1 for x = - , 15. 0, p, 2p 16. , 17. sin x=1 for x = 18. cos x=1 for –2p, 0, 2p; cos x=–1 for x=–p, p 2 2 2 2 2 2 3. 1; 19. B, C, F 20. A, D, E 21. 22. y 23. y – 4 3 2 2 – x 2 – 2 3 26. x 2 3 x – 27. 28. y 1 2 – x x – 2 2 2 1 30. y 2 2 3 1 31. y 2 x x 2 3 y 6 4 1 1 32. y 1 2 1 4 4 6 3 8 x 2 – 2 x 2 34. y 6 4 4 2 2 4 6 2 x 2 –3 35. y 4 2 y 4 2 2 4 – –2 2 x –2 –2 33. 3 – 3 –1 –1 2 y 1 –2 x 3 1 1 2 –1 y 2 1 2 –4 y 29. y – 1 –2 –3 25. 24. x 3 y 1 x 4 2 x 2 2 4 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall 2 2 3 AN98 Section 5.4 ANSWERS 36. y 6 37. Amplitude=2; Period=2∏ 38. Amplitude=3; Period=2∏ 39. Amplitude=4; Period=∏ 40. Amplitude=1; Period=4∏ 4 x 3 2 2p 42. Amplitude=3; Period= 3 4 44. Amplitude= ; Period=3∏ 3 9 4 46. Amplitude= ; Period= 5 3 41. Amplitude=6; Period=2 2 2 2 1 4p 43. Amplitude= ; Period= 2 3 5 45. Amplitude = ; Period = 3 3 3 4 6 47. F 48. E 49. A 50. I 51. H 52. B 53. C 54. G 55. J 56. D 57. A 58. C 59. B 60. D 61. 62. y 5 63. y 64. y y 5 2 4 x x – 2 – 4 4 – 2 3 – 6 6 x x 3 –1 1 2 –1 3 2 –2 –4 –5 –5 65. 1 66. y 67. y y 4 3 3 68. y 2 x –1 1 2 2 1 x – x 1 2 69. 1 2 1 y 3 2 4 3 3 2 5 x –4 –2 –4 –7 70. 3 2 4 6 1 y 2 3 x x 4 –3 3 6 –2 3 32 –4 3 –2 1 71. y=—3 sin(2x) 72. y=—2 sin a x b 73. y=—3 sin(∏x) 2 p 1 74. y=—4 sin(2∏x) 75. y = 5 cos a x b 76. y=4 sin a x b 4 4 1 p 3 77. y = - 3 cos a x b 78. y=–2 sin a x b 79. y = sin(2px) 2 2 4 5 3 80. y=- cos(∏x) 81. y = - sin a x b 82. y=–∏ cos x 2 2 83. y = - cos a 4p 1 3 p x b + 1 84. y=- sin a x b - 1 85. y = 3 sin a x b 86. y=–2 cos(∏x) 87. y=–4 cos(3x) 88. y=4 sin(2x) 3 2 2 2 1 1 1 89. Period = ; Amplitude=220 90. Period = ; Amplitude=120 91. (a) Amplitude=220; Period = 30 15 60 (b), (e) I V I 1 15 t 1 30 –220 220 120 220 2 15 t V 22 t –22 1 15 –120 I 1 60 1 30 –220 (c) I=22 sin(120∏t) (d) Amplitude=22; Period = Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall 1 60 Section 5.5 ANSWERS 92. (a) Amplitude=120; Period = (b), (e) 1 60 93. (a) P = 120 t 1 60 I 1 30 –120 94. (a) Physical potential: ◊= (b) 100 0 R sin2(2pft) V20 2p p 2p ; Emotional potential: ◊= ; Intellectual potential: ◊= 23 14 33 (c) No (d) Physical potential peaks at 15 days after 20th birthday. Emotional potential is 50% at 17 days, with a maximum at 10 days and a minimum at 24 days. Intellectual potential starts fairly high, drops to a minimum at 13 days, and rises to a maximum at 29 days. 36 0 95. 96. y 1 y 1 x –2 R V20 and 2R 1 period and is of the form y=A cos(◊t)+B, 2f V20 V20 1 2p and B = then A=. Since = , 2R 2R 2f v then ◊=4∏f. Therefore, V20 V20 V20 = P=cos(4∏ft)+ [1-cos(4∏ft)]. 2R 2R 2R 1 (d) Amplitude=6; Period = 60 V = (b) Since the graph of P has amplitude (c) I=6 sin(120∏t) y [V0 sin(2pft)]2 0 – x 2 –2 –1 0 – 2 –1 5.5 Assess Your Understanding (page 423) 3. origin; odd multiples of ∏ 2 4. y-axis; odd multiples of ∏ 2 5. y=cos x 6. T 7. 0 11. sec x=1 for x=–2∏, 0, 2∏; sec x=–1 for x=–∏, ∏ 12. csc x=1 for x=13. - 3p p p 3p ,- , , 2 2 2 2 21. 14. –2∏, –∏, 0, ∏, 2∏ 22. y 15. - 3p p p 3p ,- , , 2 2 2 2 2 26. y 2 x 3 – 27. x 2 2 x 3 2 2 3 3 2 28. y y 10 3 2 x 2 –2 y 2 y 2 x – 3 –2 25. 24. 2 x – 3p p p 3p , ; csc x=–1 for x=- , 2 2 2 2 y 2 2 10. No y-intercept 16. –2∏, –∏, 0, ∏, 2∏ 17. D 18. C 19. B 20. A 23. y 8. No y-intercept 9. 1 2 3 x x 2 – –10 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall AN99 AN100 Section 5.5 ANSWERS 29. 30. y 31. y 2 1 32. y y 2 2 1 1 x – x 2 – 2 x 3 1 2 – 3 –1 – 2 2 x 2 33. 34. y 35. y 36. y y 10 4 3 – x 4 – 2 2 x x 2 –4 –2 3 38. y 39. y 2 x 2 x y 2 2 2 –2 x – 2 5 x 2 – 3 4 (4 , 1) (4 , 3) 2 – 4 –2 4 x y 6 –3 4 ) ( 2 , 1) –4 x y 2 2 3 4 5 6 7 44. x x 2 x 3 2 6 5 4 3 2 1 4 x 5 2 5 , 2 2 , 2 2 1 2 3 4 5 x 9 4 x 5 4 (c) t 1 2 t 2 3 2 – 4 3 4 4 2 , 1 5 7 4 4 3 2 , 1 ( ( 4 , 2) ) ( ( 7 4 ) ( 45. (a) L(u) = (b) 3, 2 4 3 4 3 4 , 2 x 13 4 11, 2 4 11 4 x ) 7 4 , 2 ) 3 4 + = 3 sec u + 4 csc u cos u sin u (c) 0.83 (d) 9.86 ft 25 x 0 0 (b) d=10 tan (pt) is undefined at e t = d 25 –25 x 4 y 3 2 x 2 –6 5 4 3 2 1 3 2 2 4 ( 2 x0 x – 2 (, 2) 3 , 1 4 x –2 – 3 – 2 2 –5 42. (54 , 3) 4 x 3 4 6 x 3 2 x 2 y 6 6 46. (a) – 40. y 5 –5 43. – 4 –4 5 41. 2 –10 37. 2 2 k ∑k is an odd integer f . 2 d=10 tan (pt) 0 0 0.1 3.2492 0.2 7.2654 0.3 13.764 0.4 30.777 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall Section 5.6 ANSWERS AN101 d(0.2) - d(0.1) d(0.3) - d(0.2) d(0.4) - d(0.3) = 32.492; = 40.162; = 64.986; = 170.13 0.1 0.1 0.1 0.1 (e) The first differences represent the average rate of change of the beam of light against the wall measured in feet per second. For example, between 0 and 0.1 second the beam of light is moving at 32.492 ft/sec, on average. The speed increases as d increases from 0 to 0.5. (d) 47. d(0.1) - d(0) y y 5 5 x – 2 x – 3 2 2 –5 y = tan x 3 2 –5 y cot(x + ) 2 5.6 Assess Your Understanding (page 434) 1. phase shift 2. F 3. Amplitude=4 4. Amplitude=3 2p Period= 3 p Phase shift= 3 Period=p p Phase shift= 2 y y Period 4 3 3 3 –4 3 6 y y Phase 3 shift 2 – 4 4 x –3 y y Phase shift 2 Phase shift 3 Phase shift=- 2 –1 Period x 1 2 –1 – –4 –2 Period 14. Amplitude=3 Period=p p Phase shift = 4 y Period Period 3 4 1 –3 –2 x 2 3 x 2 p 2 2 2– 13. Amplitude=3 Period=p p Phase shift = 4 x 2 2 p Period 12. Amplitude=2 Period=1 2 Phase shift= p Period 10. Amplitude=2 Period=1 Phase y shift 2 1– Period y 2 1 2 – –1 Phase shift –2 11. Amplitude=3 Period=2 2 Phase shift= p 3 x x Period Phase shift=- 2 2 2 4 2 Period – y – –3 x 9. Amplitude=4 Period=2 Phase shift 2 2 Period 8. Amplitude=2 Period=p p Phase shift= 4 p 4 3 –2 Period 7. Amplitude=3 Period=p –3 2 6 p 2 Phase shift=Phase y shift – 2 3 –3 Phase shift 3 4 Period=p x – 3 2 Phase shift=- 6. Amplitude=3 Phase y shift Phase shift x 2 5. Amplitude=2 2p Period= 3 p Phase shift=6 x 4 –3 Phase shift Phase shift Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall x 3 4 5 4 AN102 Section 5.6 ANSWERS 15. y=2 sin c 2 a x - 1 b d or y=2 sin(2x-1) 2 16. y=3 sin c 4(x-2) d or y=3 sin(4x-8) 1 2 2 2 17. y=3 sin c a x + b d or y=3 sin a x + b 18. y=2 sin[2(x+2)] or y=2 sin(2x+4) 3 3 3 9 1 1 1 1 19. Period= ; Amplitude=120; Phase shift= 20. Period= ; Amplitude=220; Phase shift= 15 90 30 360 I I 220 120 1 15 t 1 90 1 15 –120 21. (a) –220 p p 2p b + 40.1 (b) y=15.9 sin c (x - 4) d + 40.1 or y=15.9 sin a x 6 6 3 (c) 60 (d) y=15.62 sin(0.517x-2.096)+40.377 (e) 60 60 0 20 13 0 20 22. (a) 13 0 20 13 p p 2p b +57.3 (b) y=22.7 sin c (x - 4) d + 57.3 or y=22.7 sin a x 6 6 3 (c) 80 (d) y=22.61 sin(0.503x-2.038)+57.17 80 (e) 0 20 t 1 60 2 15 80 13 0 20 13 0 13 20 23. (a) p p 2p b + 50.45 (b) y=24.95 sin c (x - 4) d + 50.45 or y=24.95 sin a x 6 6 3 (c) 80 (d) y=25.693 sin(0.476x-1.814)+49.854 80 (e) 0 20 13 0 20 24. (a) 13 0 20 13 p p 2p b +54.4 (b) y=22.6 sin c (x - 4) d +54.4 or y=22.6 sin a x 6 6 3 (c) 80 (d) y=22.46 sin(0.506x-2.060)+54.35 (e) 80 80 0 20 80 13 0 20 13 0 13 20 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall Review Exercises ANSWERS 25. (a) 4:08 PM 26. (a) 8:41 P.M. 4p (b) y=4.4 sin c (x - 0.5083) d + 3.8 or 25 4p y=4.4 sin c x - 0.2555 d + 3.8 25 (c) y (d) 8.2 ft (b) y=5.5 sin c 4p (x - 5.0583) d + 7.7 or 25 4p y=5.5 sin a x - 2.5426 b + 7.7 25 (c) y (d) 13.2 ft 14 12 10 8 6 4 2 9 7 5 3 1 x 2 4 6 27. (a) y=1.0835 sin c y=1.0835 sin a (b) 11.86 hr (c) 8 12 x 1 2p (x - 80.75) d + 11.6665 or 365 2p x - 1.3900 b + 11.6665 365 3 5 7 28. (a) y=2.2915 sin c 2p (x - 80.75) d + 11.3585 or 365 y=2.2915 sin a (b) 11.76 hr (c) y 13 9 11 13 2p x - 1.3900 b + 11.3585 365 y 14 13 12 12 11 11 10 10 0 29. (a) y=5.3915 sin c y=5.3915 sin a (b) 11.79 hr (c) 9 x 100 200 300 8 400 2p (x - 80.75) d + 10.8415 or 365 2p x - 1.3900 b + 10.8415 365 30. (a) y=0.992 sin c y=0.992 sin a x 0 100 200 300 400 2p (x - 80.75) d + 11.775 or 365 2p x - 1.3900 b + 11.775 365 (b) 11.95 hr (c) y y 17 14 15 13 13 11 12 9 11 7 5 x 0 100 200 300 400 10 x 0 100 200 300 400 Review Exercises (page 440) 1. 13. 27. 32. 34. 36. 38. p 1 1 12 3 12 4 13 5. 135° 6. 120° 7. 450° 8. –270° 9. 10. 11. 12. 2+313 + 12 2 2 2 2 3 3 13 15. 3 16. 1 + 4 12 17. 0 18. 1 19. 0 20. –2 21. 1 22. 1 23. 1 24. 1 25. 1 26. 1 - 3 12 - 2 13 14. 2 3 4 5 5 3 –1 28. –1 29. 1 30. –1 31. cos u = ; tan u = ; csc u = ; sec u = ; cot u = 5 3 4 3 4 4 4 5 5 3 12 5 13 13 5 sin u= ; tan u= ; csc u= ; sec u= ; cot u= 33. sin u = - ; cos u = - ; csc u = - ; sec u = - ; cot u = 5 3 4 3 4 13 13 12 5 12 5 12 5 13 13 3 4 3 5 4 sin u=- ; cos u=- ; tan u= ; csc u=- ; sec u=35. sin u = ; cos u = - ; tan u = - ; csc u = ; cot u = 13 13 12 5 12 5 5 4 3 3 3 4 3 5 4 5 12 13 13 5 sin u=- ; cos u= ; tan u=- ; sec u= ; cot u=37. cos u = - ; tan u = - ; csc u = ; sec u = - ; cot u = 5 5 4 4 3 13 5 12 5 12 4 4 5 5 3 12 5 13 13 12 sin u=- ; tan u= ; csc u=- ; sec u=- ; cot u= 39. cos u = ; tan u = - ; csc u = - ; sec u = ; cot u = 5 3 4 3 4 13 12 5 12 5 3p 4 2. 7p 6 3. p 10 4. Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall AN103 AN104 Review Exercises ANSWERS 5 5 13 13 12 110 3 110 ; tan u=- ; csc u=- ; sec u= ; cot u=41. sin u = ; cos u = ; csc u = - 110; 13 12 5 12 5 10 10 2 113 113 110 3 113 113 3 sec u = ; cot u = 3 42. sin u= ; cos u=; csc u= ; sec u=; cot u=3 13 13 2 3 2 2 12 1 3 12 12 43. sin u = ; cos u = ; tan u = - 2 12; csc ¨=; cot u = 3 3 4 4 1 115 115 4 115 44. sin u=- ; cos u=; tan u= ; sec u=; cot u=115 4 4 15 15 15 2 15 1 15 45. sin u = ; cos u = ; tan u = - ; csc u = 15; sec u = 5 5 2 2 2 15 15 15 1 46. sin u=; cos u= ; csc u=; sec u=15; cot u=5 5 2 2 47. 48. 49. y 50. y y y 40. sin u=- 2 3 x x – ⫺– – 2 2 ⫺3 52. y 4 3 ⫺––– 2 – ⫺– x ⫺4 55. 2 56. – 2 ⫺ 6 – x – 3 2 ⫺10 57. 58. y 63. Amplitude=4 2p Period= 3 Phase shift=0 5 – 4 x x – ⫺ 60. Amplitude=1; period=∏ x 3 ⫺4 x 3 ⫺2 Period=4∏ p Phase Shift= 2 y 3 2 2 ––– 3 2 62. Amplitude=2; period= 3 66. Amplitude=1 Period=∏ y – ⫺5 65. Amplitude=2 Phase shift=0 4 2 61. Amplitude=8; period=4 Period=6∏ 6 Phase Shift=–∏ y 2 ⫺2 x ⫺ ⫺3 x – ⫺ ⫺5 64. Amplitude=2 y y 5 ⫺5 59. Amplitude=4; period=2∏ 2 2 ⫺5 x – ⫺8 ⫺ –4 x – 6 y 5 5 y 10 ⫺– ⫺3 y 54. y 8 x 2 ⫺3 53. y 2 2 ⫺2 3 ⫺ x x 4 2 2 ⫺2 51. 3 2 2 x 2 2 2 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall ANSWERS 1 67. Amplitude= 2 4p Period= 3 2p Phase shift= 3 y 1– 2 2 ––– 3 –– 3 3 68. Amplitude= 2 p Period= 3 Phase shift=- 2 69. Amplitude= 3 70. Amplitude=7 Period=2 Period=6 6 Phase shift= p y p 2 y 5 ––– 3 Phase shift=- –– 6 x –– 3 6 –– x 3 12 –– 2 ⫺ –3 3 ⫺ –2 1 ⫺ –2 4 p 7 x x 2 6 ⫺7 x x p p 72. y=4 sin 73. y=–6 cos a x b 74. y=–7 sin a x b 75. 0.38 76. 1.02 4 4 4 4 Sine, Cosine, Cosecant and Secant: Negative; Tangent and Cotangent: Positive 78. Quadrant IV 212 312 1 12 sin ¨= ; cos ¨=- ; tan ¨=- 212; csc ¨= ; sec ¨=–3; cot ¨=3 3 4 4 4 3 4 p sin t= , cos t=- , tan t=81. Domain: e x ` x odd multiple of f ; range: {yœœyœ 1}; period = 2(∏) 5 5 3 2 p p 16p (a) 32.34 (b) 631048 83. ≠1.05 ft; L 1.05 ft¤ 84. 8∏≠25.13 in.; L 16.76 in. 3 3 3 p Approximately 114.59 revolutions/hr 86. Approximately 5.24 ft/s 87. 0.1 revolution/s= radian/s 5 Approximately 945.38 rpm; yes; approximately 1080.43 rpm 1 1 1 (a) 120 (b) (c) 90. (a) (b) 220 (c) (d) E I 60 15 180 120 71. y=5 cos 77. 79. 80. 82. 85. 88. 89. 220 t 1 –– 60 1 –– 30 t 1 –– 15 ⫺120 2 –– 15 ⫺220 91. (a) p 2p (b) y=19.5 sin a x b + 70.5 6 3 (c) (d) y=19.518 sin(0.541x-2.283)+71.014 y 100 (e) 95 y 100 90 90 80 80 70 70 60 50 92. (a) y 80 70 60 50 40 30 20 x 0 1 2 3 4 5 6 7 8 9 10 11 12 60 50 x x 0 1 2 3 4 5 6 7 8 9 10 11 12 80 70 60 50 40 30 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 p 2p (b) y=25 sin a x b + 50 6 3 (c) y x 0 1 2 3 4 5 6 7 8 9 10 11 12 AN105 y 2– 3 3– 2 4 ––– 3 Review Exercises 13 45 (d) y=25.815 sin(0.521x-2.175)+50.46 (e) 80 0 20 13 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall AN106 93. (a) y=1.85 sin a (b) Review Exercises ANSWERS 2p 357 p b + 11.517 x 365 146 (c) 11.83 hr y 14 94. (a) y=2.775 sin a (b) y 14 13 12 11 10 9 8 13 12 11 10 9 x 0 100 200 300 400 2p 357 p b + 11.192 x 365 146 (c) 11.66 hr x 0 100 200 300 400 Chapter Test (page 443) 1. 13 9 2. - 20 9 13 180 3. 15.≠– 1.524 16.≠2.747 17. 2 16 7 5 5 16 tan u==12 2 16 7 csc u= 5 8. 0 1 2 10. - sin u cos u tan u sec u csc u cot u u in QI + + + + + + + - - - + - u in QIII - - + - - + u in QIV - + - + - - sec u= 2 15 2 =5 15 26. y y tan(x + ) + 2 4 ( 23 , 2 ) 13 5 cot u=- 5 12 24. - 1 2 27. y=–3 sin a 3x + y x 2 –2 7 153 53 51146 23. 146 22. 13 12 sec u=- 13.≠0.292 14.≠0.309 2 4 ( 76 , 0 ) 3(1 - 12) 3 18. 5 csc u= 3 2 cot u=- 12. 21. sin u= 3 3 15 =5 15 csc u=- 11. 2 12 13 5 cos u=13 20. sin u=- 7 7 16 =12 2 16 2 16 cot u=5 ( 6 , 0 ) 13 3 u in QII sec u=- 2 9. - 15 3 15 tan u=2 19. cos u=- 25. 1 2 4. – 22.5° 5. 810° 6. 135° 7. , 0) ( 13 6 2 ( 53 , –2 ) x –2 – 28. 121.19 ft2 29. 143.5 rpm 30. (a) 2633 ft (b) 818 ft Cumulative Review (page 446) 1 1. e - 1, f 2 2. y-5=–3(x+2) or y=–3x-1 2 4. A line. Slope ; intercepts (6, 0) and (0, –4) 3 3. x¤+(y+2)¤=16 5. A circle. Center (1, –2); Radius 3 y 6. y 2 4 y 7 x 3 5 x 6 (2, 3) (1, 2) 6 (4, 3) (3, 2) 4 6 1 1 x 5 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall 3p b 4 Cumulative Review ANSWERS 7. (a) (b) y 6 (c) y 4 (1, 1) (1, 1) 3 (d) (1, 1) 3 (0, 0) 1 3 (1, 1) x ( 1 –1, e 4 (0, 0) (e) ) 2 y 3 2,1 1 ( ) 2 , 1 ( 1 (x + 2) 3 9. –2 x x (0, 0) 5 (1, 0) 1 , 1 e ( 4 , 1) x 10. 3 11. 3- y 4 2 (0, 0) ( 4 , 1) 1 ) x 2 1 (f) y 2 (0, 1) ( ) (e, 1) 8. f- 1(x) = (1, e) x 3 y 3 2 y 5 2 3 13 2 p 12. y=2(3x) 13. y=3 cos a x b 6 x 4 14. (a) f(x)=–3x-3; m=–3; (–1, 0), (0, –3) y 4 (2, 3) x 5 (1, 0) 5 (0, 3) 6 (b) f(x)=(x-1)¤-6; (0, –5), (- 16 + 1, 0); ( 16 + 1, 0) y (2, 3) 3 x 5 5 (1.45, 0) (1, 6) (3.45, 0) 7 (1, 6) (c) We have that y=3 when x=–2 and y=–6 when x=1. Both points satisfy y=aex. Therefore, for (–2, 3) we have 3=ae–¤ which implies that a=3e¤. But for (1, –6) we have –6=ae⁄, which implies that a=–6e–⁄. Therefore, there is no exponential function y=aex that contains (–2, 3) and (1, –6). 1 15. (a) f(x)= (x + 2)(x - 3)(x - 5) 6 y 10 (0.08, 5.01) (2, 0) 4 10 (b) R(x)=- (x + 2)(x - 3)(x - 5) 3(x - 2) y 10 (3, 0) (5, 0) x 6 (4.08, 1.01) (0, 5) (2, 0) 4 (3.82, 1.03) (5, 0) x (3, 0) 6 10 Copyright © 2006 Pearson Education, Inc., publishing as Pearson Prentice Hall AN107
© Copyright 2024