6.4 Solving Linear Inequalities by Using Addition and Subtraction

MMS9_Prep book_Unit6.4.qxp
7/7/09
10:46 AM
Page 246
6.4 Solving Linear Inequalities by Using
Addition and Subtraction
FOCUS Use addition and subtraction to solve inequalities.
Consider the inequality !1 " 3.
–3
–2
–1
0
1
2
3
4
5
What happens to an inequality if we add the same number to each side?
!1 " 3
Add 2 to each side.
Left side: !1 # 2 $ 1
Right side: 3 # 2 $ 5
The resulting inequality is still true: 1 " 5
+2
–3
–2
–1
0
+2
1
2
3
4
5
What happens to an inequality if we subtract the same number from each side?
!1 " 3
Subtract 2 from each side.
Left side: !1 ! 2 $ !3
Right side: 3 ! 2 $ 1
The resulting inequality is still true: !3 " 1
–2
–3
–2
–2
–1
0
1
2
3
4
5
Property of Inequalities
When the same number is added to or subtracted from each side of an inequality,
the resulting inequality is still true.
The strategy that we used to solve an equation can be used to solve an inequality.
Isolate the variable to solve.
Equation
r ! 6 $ –2
r ! 6 # 6 $ !2 # 6
r$4
There is only 1 solution: r $ 4
246
Inequality
r ! 6 " !2
r ! 6 # 6 " !2 # 6
r"4
Any number less than 4 is part of the solution.
The solution includes 3, 2, and 1, for example.
MMS9_Prep book_Unit6.4.qxp
7/8/09
Example 1
4:14 PM
Page 247
Solving an Inequality
a) Solve the inequality 6 " x # 4.
b) Graph the solution on a number line.
Solution
a)
b)
6"x#4
Add 4 to each side to isolate x.
6!4"x#4!4
10 " x
This is the same as x & 10.
9
10
11
12
13
14
Place a shaded circle on 10 because
10 is part of the solution.
15
Check
1. Solve each inequality. Graph the solution on the number line.
a) p ! 3 " 4
-3
-3
p ! 3 _____
" 4 _____
p " _________________
1
_____________________
–3
–2
–1
Example 2
0
.
1
b) #5 $ 2 ! a
-5 - 2 > 2 + a - 2
________________________
-7 > a
________________________
-11 -10 -9
-8 -7
-6
2
Solving an Inequality with Variables on Both Sides
a) Solve the inequality 3d ! 2 % 2d # 2.
b) Graph the solution on a number line.
Solution
a)
b)
3d ! 2 % 2d # 2
3d ! 2 # 2d % 2d # 2 # 2d
d ! 2 % #2
d ! 2 # 2 % #2 # 2
d % #4
Subtract 2d from each side.
Subtract 2 from each side.
Place an open circle on #4 because
#4 is not part of the solution.
–9
–8
–7
–6
–5
–4
–3
247
MMS9_Prep book_Unit6.4.qxp
7/7/09
10:46 AM
Page 248
Check
1. Solve each inequality. Graph the solution on a number line.
a) 3z ! 1 & 2z $ 2
b) 4 $ 4x " 6 $ 5x
3z + 1 -1 < 2z -2 - 1
___________________________
4 - 4x -4 > 6 - 5x -4
___________________________
-4x > 2 -5x
___________________________
-4x + 5x > 2 -5x + 5x
___________________________
x>2
___________________________
3z < 2z - 3
___________________________
3z - 2z < 2z - 3 - 2z
___________________________
___________________________
z < -3
–7
–6
–5
–4
.
–3
1
–2
2
3
4
5
6
Practice
1. Which operation will you perform to each side of the inequality to isolate the variable?
a) a ! 1 " 3
b) 2 # m $ 3
subtract 1
______________
add 3
______________
c) x $ 4 % 5
d) 6 " 1 $ z
add 4
______________
subtract 1
______________
2. Fill in the missing steps to get to the solution.
a) x ! 5 " 10
-5
-5
x ! 5 _____
" 10 _____
x" 5
b) 12 & x $ 4
+ 4 & x $ 4 _____
+4
12 _____
16 & x
3. Solve each inequality.
Match each inequality with the graph of its solution, below.
a) n $ 4 " $2
b) p ! 6 # $2
n>2
________________________
________________________
p < -8
________________________
________________________
c) u $ 3 % $4
d) 2 ! y " $2
u > -1
________________________
________________________
y > -4
________________________
________________________
i)
ii)
iii)
iv)
248
c
–2
–1
0
1
2
3
1
2
3
4
5
6
–5
–4
–3
–2
–1
0
a
d
–12 –11 –10 –9
–8
–7
b
MMS9_Prep book_Unit6.4.qxp
7/7/09
10:46 AM
Page 249
4. a) Solve each inequality. Graph the solution on a number line.
i) y ! 3 " #2
ii) 2 ! b $ 5
y + 3 - 3 < -2 -3
________________________
y < -5
________________________
–9
–8
–7
–6
.
–5
2+b-2<5-2
________________________
b<3
________________________
–4
iii) 4 % n # 2
-1
4
2
3
4
3+3<t-3+3
________________________
6<t
________________________
.
6>n
________________________
3
1
iv) 3 $ t # 3
4+2>n-2+2
________________________
2
0
5
6
7
5
6
7
8
9
10
b) Write 3 numbers that are possible solutions for each inequality.
i) _____________________
answers may vary
answers may vary
ii) _____________________
may vary
iii) answers
_____________________
answers may vary
iv) _____________________
c) Write a number that is NOT a solution of each inequality.
may vary
ii) answers
____________
may vary
i)answers
____________
answers may vary
may vary
iii) answers
____________
iv) ____________
5. Solve, then graph each inequality.
a) 6a ! 2 % 5a ! 1
b) 3 ! 2s & s # 3
6a
+ 2 - 2 > 5a + 1 - 2
___________________________
6a > 5a -1 -5a
___________________________
a > -1
___________________________
___________________________
–2
.
–1
0
1
2
3
6. a) Solve the equation: 4v # 6 ' 3v # 3
4v - 6 + 6 = 3v - 3 + 6
___________________________
4v = 3v + 3
___________________________
4v - 3v = 3v + 3 -3v
___________________________
___________________________
v=3
.
Graph the solution.
1
2
3
4
5
3 + 2s -3 > s - 3 - 3
___________________________
2s > s - 6
___________________________
2s - s > s - 6 - s
___________________________
s > -6
___________________________
-7
-6 -5
-4
-3
-2
b) Solve the inequality: 4v # 6 & 3v # 3
4v - 6 > 3v - 3
___________________________
4v - 6 + 6 > 3v - 3 + 6
___________________________
4v > 3v + 3
___________________________
4v - 3v > 3v + 3 - 3v
___________________________
v>3
Graph the solution.
6
1
2
3
4
5
6
249