บทความวิจัย การสังเคราะห์ และโครงสร้างผลึกของสารประกอบเชิงซ้อนนิกเกิล (II) กับลิแกนด์เตตระเอซา วงขนาดใหญ่ 14 เหลี่ยม Synthesis and Crystal Structure of Nickel(II) Complex With 14-Membered Tetraaza Macrocyclic Ligand สุรชัย คงชู1 เชวง ภควัตชัย2 และอานอบ คันฑะชา3* Surachai Kongchoo1, Chaveng Pakawatchai2 and Anob Kantacha3* บทคัดย่อ สารประกอบเชิงซ้อน [NiL](ClO4)2 ที่มีวงขนาด 14 เหลี่ยมถูกเตรียมจากการทำปฏิกิริยาของเอทิลีนไดเอมีน บิวทิลลามีน ฟอร์มัลดีไฮด์ และโลหะนิกเกิล(II) เมื่อ L คือ 1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane โดย ลิแกนด์ เตตระเอซาที่มีวงขนาด 14 เหลี่ยม ประกอบด้วย บิวทิลลามีน 2 โมเลกุลเป็นแขนด้านข้างได้ยืนยันโครงสร้าง สารประกอบเชิงซ้อนด้วยเทคนิคทางสเปกโทรสโกปีและเทคนิคการเลี้ยวเบนรังสีเอกซ์บนผลึกเดี่ยวพบว่าสารประกอบ เชิงซ้อนดังกล่าวมีรูปทรงทางเรขาคณิตแบบสี่เหลี่ยมแบนราบโดยรอบไอออนนิกเกิล(II) ประกอบด้วยอะตอม ไนโตรเจน 4 อะตอม โดยแขนด้านข้างเป็นเอมีน 2 โมเลกุลอยู่ตรงข้ามกัน และมีแรงดึงดูดอย่างอ่อนระหว่างเปอร์ คลอเรต 2 ไอออนกับโลหะนิกเกิล(II) ในตำแหน่งทรานส์ซึ่งกันและกัน คำสำคัญ: โครงสร้างผลึก วงขนาด 14 เหลี่ยม สารประกอบเชิงซ้อนนิกเกิล(II) Abstract The 14-membered macrocyclic complex, [NiL](ClO4)2 has been prepared via the reaction of ethylenediamine, butylamine and formaldehyde in the presence of Ni(II) ion, as L = 1,8-dibutyl-1,3,6,8,10,13-hexaazacy clotetradecane. The ligand is a 14-membered tetraaza macrocycle having two butylamine pendant arm. The complex, investigated by spectroscopic and single crystal x-ray diffraction technique, supports the formation of square-planar complex with the Ni(II) ion located within a tetraaza macrocyclic containing four nitrogen atoms and two pendant amines coordinating on opposite sides of a plane defined by macrocycle and the Ni(II) ion. Two perchlorate ions coordinate weakly to the central Ni(II) in trans position. Keywords: Crystal structure, 14-Membered Cycle, Nickel (II) complex นิสิตปริญญาโท สาขาเคมีประยุกต์ คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ สงขลา 90000 ผศ.ดร., ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ หาดใหญ่ 90000 3 อ.ดร., สาขาวิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ สงขลา 90000 * Corresponding author: E-mail: [email protected] Tel. 083-1931922 1 2 การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ 167 วารสารมหาวิทยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั้งที่ 22 ปี 2555 Introduction Tetraaza macrocyclic complexes have been synthesized as models for metalloporphyrins, chlorophyll, metallocprrins, hemoglobin and vitamin B12 due to their intrinsic structure properties. There have beeen various applications of tetraaza macrocyclic complexes, such as antimicrobial, luminescent sensor, artificial restriction enzymes for cleaving DNA and RNA, magnetic and catalytic properties Metal template syntheses of macrocyclic ligands have been useful and effective method to obtain new macrocyclic ligands during the last three decades. The metal ions as templates and many macrocyclic ligands have been prepared by the condensation of formaldehyde with amide. Template synthesis of macrocyclic complexes is simple reaction as formaldehyde links between two amine moieties to form methylenediamine linkages (-N-CH 2 -N-). The methylenediamine linkage is unstable when it contains primary amines, RNH 2 in which R is either aromatic or aliphatic group, such as methylamine, propylamine and phenylethylamine, which can condense with formaldehyde to from a new N-C bond In this work, the Ni(II) complex containing the 14-membered tetraaza macrocyclic ligands has been synthesized in a one-pot reaction involving nikel(II) chloride, ethylenediamine, formaldehyde and butylamine in 95% absolute ethanol. Experimental Materials and Method NiCl2•6H2O, ethylenediamine, formaldehyde, butylamine and perchloric acid were all purchased from commercial source and used as received. Caution! Perchlorate salts of metal complexes are potentially explosive. Only a small amount material should be prepared, and it should be handled with care. IR spectra (4000 - 400 cm-1) were recorded with FT - IR spectrometer as a KBr disk. The visible spectra were recorded with a Shimadzu Lambda-1600 UV - Vis spectrophotometer in DMSO. Single crystal suitable for x-ray crystallographic analyses were obtained by the slow evaporation of solvent from the acetonitrile : ethanol solution of complex at room temperature. X-ray data for complex were collected at 293 K on a Bruker SMART APEX CCD area-detector diffractometer with graphite monochromated Mo Kα - radiation (K = 0.71073 Å). The data integration and reduction were processed with SAINT software. An empirical absorption correction was applied to the collected reflections with SADABS program The linear absorption coefficients, scattering factors for the atoms and the anomalous dispersion corrections were taken from the International Tables for x-ray crystallography. All the structure was solved by the direct method using SHELXS-97 program [1] and was refined on F2 by the full-matrix least-squares technique using the SHELXL-97 program. Figures were drawn using Mercury - 3.0 [2] and Diamond - 3.0 [3] 3 วารสารมหาวิทยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 Synthesis of [NiL](ClO4)2 168 การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ จากงานประชุTo มวิชaาการระดั ชาติ มหาวิethanol ทยาลัยทัก(10 ษิณ ครั ้งที่ 22 2555 ·6H O (2.3058 g, 10 mmol) were added 99% 95% บabsolute mL) of ปีNiCl 2 2 ethylenediamine (1.3 mL, 20 mmol) in 95% absolute ethanol (10). After the mixture was completely clear blue Synthesis [NiL](ClO ) formaldehyde (2.2 mL, 40 mmol), with stirring until the mixture was completely dark solutionofthen, added 37% 42 blue To a 95%and absolute ethanol (10 (2mL)mL,of 20 NiCl2•6H2O 10 mmol) werestirring. added 99% solution then butylamine mmol) was(2.3058 added g,with continuous The ethylenedimixture of amine (1.3 mL, 20 mmol) in 95% absolute ethanol (10). After the mixture was completely clear blue reactants was refluxed for 24 h and the yellow solution was cooled to room temperature and filtered tosolution remove then, added 37% formaldehyde (2.2 mL, 40 mmol), with stirring until the mixture was completely dark blue any insoluble After (2themL, amount of concentrated acid have beenThe added dropwise, the mixture solution and thensolids. butylamine 20 mmol) was added perchloric with continuous stirring. mixture of reactants was was filtered and stored at room temperature to form yellow solids. Yield: 67%. The product was purified refluxed for 24 h and the yellow solution was cooled to room temperature and filtered to remove any insolubleby solids. After the amount of concentrated perchloric acidin have dropwise, mixture was filtered andxrecrystallization from acetonitrile : absolute ethanol mole been ratio added 1 : 1. The physicaltheproperties and analytical stored at room temperature ray data are given in Tableto1.form yellow solids. Yield: ≈ 67%. The product was purified by recrystallization from acetonitrile : absolute ethanol in mole ratio 1 : 1. The physical properties and analytical x-ray data are given in Table 1. Results and Discussion The tetraaza macrocyclic complex has and beenDiscussion synthesized in a one – pot reaction involving Nickel Results chloride, The tetraaza macrocyclic complex hasandbeen synthesized a onein– Scheme pot reaction involving Nickelcomplex chloride,is ethylenediamine, formaldehyde butylamine as inshown 1. The synthesized ethylenediamine, and butylamine as shown 1. The synthesized complex is found be found to be air formaldehyde stable and insoluble in water, but solubleininScheme some polar solvents, for instance MeCN, DMFto and air stable and insoluble in water, but soluble in some polar solvents, for instance MeCN, DMF and DMSO. The DMSO. The analytical data of the complexes and some physical properties are summarized in Table 1. analytical data of the complexes and some physical properties are summarized in Table 1. Where L = 1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane Where L = 1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane Scheme 1. Synthesis of [NiL](ClO4)2 Scheme 1. Synthesis of [NiL](ClO4)2 4 วารสารมหาวิทยาลัยทักษิณ การสังเคราะห์ และโครงสร้างผลึก 169 ปีที่ 15 ฉบั บที่ 3 ฉบับพิligands เศษ 2555 สุTable รชัย คงชู และคณะproperties and analytical data of nickel(II) complexes containing tetraaza 4 1. Physical macrocyclic จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั้งที่ 22 ปี 2555 Empirical Melting Complex Reaction Colour Table 1. Physical properties and analytical data of nickel(II) complexes containing tetraaza ligands formula point (omacrocyclic C) Table 1. Physical properties and analytical data of nickel(II) complexes containing tetraaza macrocyclic ligands NiCl2•6H2O + 2C2H8N2 + 4CH2O C16HEmpirical yellow [NiL](ClO4)2 223 38O8N6Cl2Ni Melting + 2C H N + HClO 4 Reaction 11 2 4 Complex Colour formula point (oC) Infrared spectra NiCl2•6H2O + 2C2H8N2 + 4CH2O C16H38O8N6Cl2Ni [NiL](ClO4)2 yellow 223 + 2C4H11N2 of + HClO The preliminary identification [NiL](ClO )4 2 complex was done from their IR spectra in Figure 1. 4 There arespectra IR frequencies of the macrocyclic complex to be shown the presence of sharp band in the 3207 cm-1 Infrared Infraredassignable spectra to the coordination of secondary amine stretching mode. The absence of a band in the regions region, The preliminary identification of [NiL](ClO4)2 complex was done from their IR spectra in Figure 1. The preliminary of [NiL](ClO done frommoiety, spectra in Figure 1. -1 -1 There IR frequencies ofidentification the macrocyclic complex becomplex shownofwas thealdehyde presence oftheir sharpIRfurther band inconfirms the 3207 the cm 1720 are – 1740 cm , which is characteristic (C=O)to4)2carbonyl There are IR frequencies of the macrocyclic complex to bestretching shown the presence of sharp ofband in the 3207 cm-1 region, assignable to regions the coordination of secondary amine The absence the regions condensation. In-1the 1384 – 1466 cm-1 and 2874 – 2961 cm-1,mode. respectively, the (Ca- band N) andin (C – H) is characteristic ν(C=O) amine carbonyl of aldehyde furtherofconfirms 1720 cm , towhich region,– 1740 assignable the coordination of secondary stretching mode.moiety, The absence a band inthethecondensaregions modes are found. In addition it is -1apparent that there is -1considerable broadening and splitting in the region -11384 – 1466 cm and 2874 – 2961 cm , respectively, the ν(C - N) and ν(C – H) modes are tion. In–the1740 regions 1720 cm1100 , which is characteristic aldehyde moiety, furtherareconfirms the peaks at(C=O) 1089 andcarbonyl 1115 cmof-1 and in which these regions assigned to centered around cm-1 with found. In addition it is apparent thattwothere is considerable broadening splitting in the region centered around -1 -1 -1 condensation. In the regions 1384 – 1466 cm and 2874 – 2961 cm , respectively, the (C N) and (C – H) perchlorate ions.two An peaks impartant feature the appearance of a new of peak cm attributable at 1089 andis1115 cm-1 in which theseband regions are intensity assignedatto506 perchlorate ions. An 1100 cm-1 with modes are found. In addition it is apparent that there is considerable broadening and splitting in the -1 which impartant is the appearance of a new band of peak intensity at 506 cm attributable to ν(Ni - N)region to (Ni - feature N) which assigns for the involvement of nitrogen in coordination. -1 -1 with two peaks at 1089 and 1115 cm in which these regions are assigned to centered around 1100 cm assigns for the involvement of nitrogen in coordination. perchlorate ions. An impartant feature is the appearance of a new band of peak intensity at 506 cm-1 attributable to (Ni - N) which assigns for the involvement of nitrogen in coordination. complex Figure1.1. The TheIR IR spectrum spectrum ofof [NiL](ClO [NiL](ClO4))2 complex Figure 42 Figure 1. The IR spectrum of [NiL](ClO4)2 complex วารสารมหาวิทยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 170 5 การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ จากงานประชุ มวิชาการระดั บชาติ มหาวิ ทยาลัยทักษิ4ณ)2 ครั้งที่ 22 ปี 2555 Crystal structure description of [NiL](ClO The ORTEP drawing view of the molecular structure and labelling scheme are given in Figure 2. Crystallographic data are givenofin[NiL](ClO Table 2. The Crystal structure description ) comple crystallizes in the triclinic and space group P 1 . In the 42 2+ Ni(II) iondrawing is coordinated secondary amine nitrogen atomsscheme of the macrocyclic cation,ThetheORTEP view ofbythefour molecular structure and labelling are given inligand Figure[NiL] 2. Crystal lographic are givengeometry in Table about 2. TheNi(1) comple in the and space groupamine P 1. Inadopts the transcation, the and thedata coordination is acrystallizes square-planar. Thetriclinic macrocyclic secondary and the Ni(II) ion is coordinated by four secondary aminerings nitrogen atomschair of the macrocyclicThese ligandpendant [NiL]2+butyl II configuration with six-membered macrocyclic adopting conformations. coordination geometry aboutreported Ni(1) isfora square-planar. The macrocyclic adoptsNi-N trans-II groups are similar to those the nickel(II) complex (Yan, Z. et secondary al, 2009). amine The average configuration macrocyclic ringstoadopting chairÅ ofconformations. Thesemacrocyclic pendant butyl groups (macrocycle)with bondsix-membered length of 1.9310(18) Å is close the ca. 1.92 other square-planar nickel are similar to those reported for the nickel(II) complex [4] The average Ni-N (macrocycle) bond complex (Yan, Z. et al, 2009). The Ni-N bond lengths are 1.9306(18) to 1.9315(18) Å and the bite angle of five length of 1.9310(18) Å is close to the ca. 1.92 Å ofo other square-planar macrocyclic nickel complex 87.04(8) and 92.96(8) , respectively. valuesofarefive similar those in [4]andThesix-membered Ni-N bond chelate lengthsrings are are 1.9306(18) to 1.9315(18) Å and the These bite angle and tosix-membered the related macrocyclic complex. respectively. The average These C-N bond length involvingto bridgehead chelate rings are 87.04(8) Ni(II) and 92.96(8)o, values are similar those in thetertiary relatednitrogen macrocyclic atom N(3) is 1.427(3) Å, which is shorter than the normal C-N single bond length [1.469(14) Å]. Large C-N-C Å, Ni(II) complex. The average C-N bond length involving bridgehead tertiary nitrogen atom N(3) is 1.427(3) o which shorter than single length [1.469(14) Large shortening C-N-C angle involving N(3) are . Similar of the bond length angleisinvolving N(3)the arenormal found toC-N in the rangebond 110.83(18) - 111.15(19)Å]. found in the range - 111.15(19)o. Similar shortening bondhave length flatteringforofother the bond and toflattering of the110.83(18) bond angles involving uncoordinated tertiaryof the amine beenandobserved angles involving uncoordinated tertiary complexes (Ahmad Husain et al., 2011).amine have been observed for other complexes [5] Table complex. Table2. 2.Crystal Crystaldata dataand andstructure structurerefinement refinement for for Ni(II) Ni(II) complex. Identification code Empirical formula Formula weight Temperature Wavelength (Å) Crystal system Space group a, b, c , , Volume (Å3) Z calc (g/cm-1) Crystal size (mm) Final R indices [I>2(I)] R indices (all data) Ni(II) complex C16H38Cl2N6NiO8 572.13 293(2) K 0.71073 Triclinic P1 8.2987(5), 8.4300(5), 10.1648(6) Å 92.2540(10)o, 94.8790(10)o, 117.3230(10)o 627.01(6) 1 1.515 0.27 x 0.126 x 0.107 R1 = 0.0315, wR2 = 0.0898 R1 = 0.0328, wR2 = 0.0911 การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ 171 วารสารมหาวิท6ยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั6้งที่ 22 ปี 2555 Figure 2. ORTEP view of the molecular structure (showing 50% thermal ellipsoids), along with the atomic Figure 2. ORTEP view of the molecular structure (showing 50% 50% thermal ellipsoids), along with the atomic Figure 2. ORTEP view of the molecularnumbering structure (showing scheme. thermal ellipsoids), along with the atomic numbering scheme. numbering scheme. The bond angles in perchlorate ion at O-Cl(1)-O are found to be in the range of 106.3(2) – The bondo while angles inbonddistances, perchlorate ionareatfound O-Cl(1)-O arerange found to betotoin1.432(2) of perchlorate 106.3(2) The angles inCl-O perchlorate ionto atbe O-Cl(1)-O are1.408(2) found bethein range theÅ.range of 106.3(2)–ion –113.08(15)o 113.08(15) bond in the The o 113.08(15) while are bondthefound distances, found to beO(1), in thewhich rangeto1.408(2) to 1.432(2) The perchlorate ion indicates at while bond distances, Cl-O be inarethe range 1.408(2) 1.432(2) Å.coordinated TheÅ. perchlorate indicates at lengthening of Cl –toOCl-O bonds involving were weakly to the Niion atom indicates at lengthening of the Cl – O bonds involving O(1), which were weakly coordinated to the Ni atom lengthening the =Cl2.875(35) – O bonds whichlength werewas weakly coordinated to the Ni atom shorter [Ni(1) – O(1) = [Ni(1) of– O(1) Å]. involving The Cl(1) –O(1), O(1) bond 1.408(2) Å, which was significantly [Ni(1) – O(1) = 2.875(35) Å]. The Cl(1) – O(1) bond length was 1.408(2) Å, which was significantly shorter 2.875(35) The Cl(1) bondCllength was 1.432(2) 1.408(2)Å.Å, which was significantly shorter than the average of thanÅ]. the average of the– O(1) other three – O bonds, other three the other threethan Cl the – Oaverage bonds,of the 1.432(2) Å. Cl – O bonds, 1.432(2) Å. ) . Ni (green) atoms are shown as small spheres of arbitrary radii. Figure 3. Unit cell3.diagrams of [NiL](ClO Figure Unit cell diagrams of [NiL](ClO 4 2 4)2. Ni (green) atoms are shown as small spheres of arbitrary radii. Figure 3. Unit cell diagrams of [NiL](ClO4)2. Ni (green) atoms are shown as small spheres of arbitrary radii. วารสารมหาวิทยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 172 การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ 7 จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัยทักษิณ ครั้งที่ 22 ปี 2555 A view of hydrogen bonds is present in the structure as shown in Figure 4. Selected bond lengths and A viewangles of forhydrogen bonds is present in the structure as shown in Figure 4. Selected bond lengths and hydrogen bonding are summarized in Table 3. angles for hydrogen bonding are summarized in Table 3. Figure 4. View of the N-H···O hydrogen bonding in structure [NiL](ClO ) . Figure 4. View of the N-H•••O hydrogen bonding in structure [NiL](ClO4)24. 2 Figure 4. View of the N-H···O hydrogen bonding in structure [NiL](ClO4)2. Table 3. Selected hydrogen bonds for [NiL](ClO4)2 [Å and o]. Table 3. Selected hydrogen bonds for [NiL](ClO4)2 [Å ando o]. Table 3. Selected hydrogen bonds for [NiL](ClO4)2 [Å and ]. D-H...A d(D-H) d(H...A) D-H...A d(D-H) d(H...A) d(D...A) N(2)-H(2)...O(2)#1 0.894(17)2.177(19) 2.177(19) N(2)-H(2)...O(2)#1 0.894(17) 3.030(3) N(1)-H(1)...O(4)#2 0.878(17) 3.031(3) N(1)-H(1)...O(4)#2 0.878(17) 2.35(2)2.35(2) N(1)-H(1)...O(1) 0.878(17) 2.56(2) 3.134(3) N(1)-H(1)...O(1) 0.878(17) 2.56(2) #1 -x+1,-y+1,-z #2 -x+1,-y+2,-z #1 -x+1,-y+1,-z#2 -x+1,-y+2,-z #2 -x+1,-y+2,-z #1 -x+1,-y+1,-z d(D...A) <(DHA) 3.030(3) 159(2) 135(2) 3.031(3) 124(2) 3.134(3) <(DHA) 159(2) 135(2) 124(2) Visible spectra The electronic spectral data (Figure 5.) of yellow complex, [NiL](ClO4)2 which is soluble in DMSO Visible spectra show absorption with the max = 452 nm which means assigned to d – d transition of Ni(II) ions. Visible spectra The electronic spectral data (Figure of yellow complex, [NiL](ClO is soluble in DMSO 4)2 which ) which is soluble in DMSO show The electronic spectral data (Figure 5.) of 5.) yellow complex, [NiL](ClO 42 = 452 nm which means assigned to d – d transition of Ni(II) ions. show absorption with the nm which means assigned to d – d transition of Ni(II) ions. absorption with the λmax = 452max การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ 173 วารสารมหาวิทยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 8 จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั้งที่ 22 ปี 2555 Figure5.5.The Thevisible visiblespectrum spectrumofof[NiL](ClO [NiL](ClO4)24)2 Figure Conclusions Conclusions In this work, a novel 14 membered tetraaza macrocyclic complex has been synthesized in a one – pot this work, a novel 14 membered tetraaza macrocyclic complex hasThe beenformation synthesized one – pot reaction by In ethylenediamine, butylamine, formaldehyde and nickel(II) chloride. of inthea proposed reaction by framework ethylenediamine, butylamine, formaldehyde and nickel(II) chloride. The formation macrocyclic has been confirmed by the appearance of secondary amine bands ofin the theproposed IR and corresponding structure the confirmed single crystal diffraction analysis and visible macrocyclic crystal framework has inbeen by x-ray the appearance of secondary aminestudies. bands The in theNi(II) IR ion and hascorresponding square-planarcrystal coordination foursingle nitrogen atoms the macrocyclic withstudies. weaklyThe coordinated structurebyin the crystal x-rayofdiffraction analysisligand, and visible Ni(II) ion perchlorate ions in trans position. has square-planar coordination by four nitrogen atoms of the macrocyclic ligand, with weakly coordinated perchlorate ions in trans position. Acknowledgements The auther is grateful to Dr.Anob Kantacha for improvement paper and also grateful to Dr.Saowanit Saithong, Department of Chemistry, Faculty ofAcknowledgements Science Prince of Songkla University for crystal x-ray data and this work was by Chemistry laboratory, of Chemistry, of Science, Thaksin Thesupported auther is grateful to Dr.Anob KantachaDepartment for improvement paper andFaculty also grateful to Dr.Saowanit University Saithong, Department of Chemistry, Faculty of Science Prince of Songkla University for crystal x-ray data and this work was supported by Chemistry laboratory, Department of Chemistry, Faculty of Science, Thaksin University References Brandenburg, K. and Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany. He, Y., Kou, H. Z., Li, Y., Zhou, B. C., Xiong, M. and Li, Y. (2003). One - pot template synthesis and crystal structure of two new polyaza copper(II) complexes. Inorganic Chemistry Communication. 6(1), 38- วารสารมหาวิทยาลัยทักษิณ ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555 174 การสังเคราะห์ และโครงสร้างผลึก สุรชัย คงชู และคณะ จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัยทักษิณ ครั้งที่ 22 ปี 2555 References [1] Sheldrick, G.M. (2008). A short history of SHELX. Acta Crystallographica Section A. 64(1), 112-122. [2] Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. and Wood, P. A. (2008). Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures. Journal of Applied Crystallography. 41(2), 466-470. [3] Brandenburg, K. and Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany. [4] Yan, Z. and Li, T. (2009). Crystal structure of (1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) nickel(II) deperchlorate, [Ni(C6H26N6)][ClO4]2. Zeitschriftfür Kristallographie New Crystal Structure. 224(3), 505-506. [5] Husain, A., Nami, S. A. A. and Siddiqi, K. S. (2011). The synthesis, crystal structures and antimicrobial studies of C-methyl-substituted hexaaza macrocycle of Cu(II) having aromatic pendant arm. Applied Organome tallic Chemistry. 25(10), 761-768. [6] He, Y., Kou, H. Z., Li, Y., Zhou, B. C., Xiong, M. and Li, Y. (2003). One - pot template synthesis and crystal structure of two new polyaza copper(II) complexes. Inorganic Chemistry Communication. 6(1), 38-42. [7] Kang, S. G., Ryu, K., Jung, S. K. and Kim, J.(1999). Template synthesis, crystal structure, and solution behavior of a hexaaza macrocyclic nickel(II) complex containing two N-aminoethyl pendant arms. Inorganic Chimica Acta. 293(2), 140-146. [8] Liu, J., Zhang, H., Chen, C., Deng, H., Lu, T. and Ji, L. (2002). Interaction of macrocyclic copper(II) complexes with calf thymus DNA: effects of the side chains of the ligands on the DNA-binding behaviors. Dalton Transactions. 1(3), 114-119. [9] Raman, N., Dhaveethu, J. and Sakthivel, A. (2008). Template synthesis of novel 14-membered tetraazamacro cyclic transition metal complexes: DNA cleavage and antimicrobial studies. Journal of the Chilean Chemical Society. 53(3), 1568-1571. [10] Shakir, M., Azim, Y., Hamida. T. N., Begum, N., Chingsubam, P. and Siddiqi M. Y. (2006). Synthesis, physicochemical and antimicrobial screening studies on 14 and 16-membered hexaazamacrocyclic complexes bearing pendant amine groups. Journal of the Brazilian Chemical Society. 17(2), 272-278. [11] Shakir, M., Islam, K. S., Mohamed, A. K., Shagufta, M. and Hasan. S. S. (1999). Macrocyclic complexes of transition metals with divalent polyaza units. Transition Metal Chemistry. 24(5), 577-580. [12] Shakir, M. and Varkey, S. P. (1994). Six-coordinate dinuclear hexaazamacrocyclic complexes of nickel(II), copper(II) and zinc(II) with tetraamide group ligands. Transition Metal Chemistry. 19(6), 606-610. [13] Sheldrick, G.M., SHELXL-97, SAINT and SADABS. (2003). Bruker AXS Inc., Madison, Wisconsin, USA. [14]Suh, M. P., Shim, B. Y. and Yoon, T. S. (1994). Template Syntheses and Crystal Structures of Nickel(II) Com plexes of Hexaaza Macrocyclic Ligands with Pendant Functional Groups: Formation of a Coordination Polymer. Inorganic Chemistry. 33(24), 5509-5514.
© Copyright 2024