บทความวิจัย การสังเคราะห์ และโครงสร้างผลึกของ

บทความวิจัย
การสังเคราะห์ และโครงสร้างผลึกของสารประกอบเชิงซ้อนนิกเกิล (II) กับลิแกนด์เตตระเอซา
วงขนาดใหญ่ 14 เหลี่ยม
Synthesis and Crystal Structure of Nickel(II) Complex With 14-Membered Tetraaza
Macrocyclic Ligand
สุรชัย คงชู1 เชวง ภควัตชัย2 และอานอบ คันฑะชา3*
Surachai Kongchoo1, Chaveng Pakawatchai2 and Anob Kantacha3*
บทคัดย่อ
สารประกอบเชิงซ้อน [NiL](ClO4)2 ที่มีวงขนาด 14 เหลี่ยมถูกเตรียมจากการทำปฏิกิริยาของเอทิลีนไดเอมีน
บิวทิลลามีน ฟอร์มัลดีไฮด์ และโลหะนิกเกิล(II) เมื่อ L คือ 1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane โดย
ลิแกนด์ เตตระเอซาที่มีวงขนาด 14 เหลี่ยม ประกอบด้วย บิวทิลลามีน 2 โมเลกุลเป็นแขนด้านข้างได้ยืนยันโครงสร้าง
สารประกอบเชิงซ้อนด้วยเทคนิคทางสเปกโทรสโกปีและเทคนิคการเลี้ยวเบนรังสีเอกซ์บนผลึกเดี่ยวพบว่าสารประกอบ
เชิงซ้อนดังกล่าวมีรูปทรงทางเรขาคณิตแบบสี่เหลี่ยมแบนราบโดยรอบไอออนนิกเกิล(II) ประกอบด้วยอะตอม
ไนโตรเจน 4 อะตอม โดยแขนด้านข้างเป็นเอมีน 2 โมเลกุลอยู่ตรงข้ามกัน และมีแรงดึงดูดอย่างอ่อนระหว่างเปอร์
คลอเรต 2 ไอออนกับโลหะนิกเกิล(II) ในตำแหน่งทรานส์ซึ่งกันและกัน
คำสำคัญ: โครงสร้างผลึก วงขนาด 14 เหลี่ยม สารประกอบเชิงซ้อนนิกเกิล(II)
Abstract
The 14-membered macrocyclic complex, [NiL](ClO4)2 has been prepared via the reaction of ethylenediamine, butylamine and formaldehyde in the presence of Ni(II) ion, as L = 1,8-dibutyl-1,3,6,8,10,13-hexaazacy
clotetradecane. The ligand is a 14-membered tetraaza macrocycle having two butylamine pendant arm. The
complex, investigated by spectroscopic and single crystal x-ray diffraction technique, supports the formation of
square-planar complex with the Ni(II) ion located within a tetraaza macrocyclic containing four nitrogen atoms
and two pendant amines coordinating on opposite sides of a plane defined by macrocycle and the Ni(II) ion. Two
perchlorate ions coordinate weakly to the central Ni(II) in trans position.
Keywords: Crystal structure, 14-Membered Cycle, Nickel (II) complex
นิสิตปริญญาโท สาขาเคมีประยุกต์ คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ สงขลา 90000
ผศ.ดร., ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ หาดใหญ่ 90000
3
อ.ดร., สาขาวิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ สงขลา 90000
*
Corresponding author: E-mail: [email protected] Tel. 083-1931922
1
2
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
167
วารสารมหาวิทยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั้งที่ 22 ปี 2555
Introduction
Tetraaza macrocyclic complexes have been synthesized as models for metalloporphyrins, chlorophyll,
metallocprrins, hemoglobin and vitamin B12 due to their intrinsic structure properties. There have beeen various
applications of tetraaza macrocyclic complexes, such as antimicrobial, luminescent sensor, artificial restriction
enzymes for cleaving DNA and RNA, magnetic and catalytic properties Metal template syntheses of
macrocyclic ligands have been useful and effective method to obtain new macrocyclic ligands
during the last three decades. The metal ions as templates and many macrocyclic ligands have been
prepared by the condensation of formaldehyde with amide. Template synthesis of macrocyclic complexes is
simple reaction as formaldehyde links between two amine moieties to form methylenediamine linkages
(-N-CH 2 -N-). The methylenediamine linkage is unstable when it contains primary amines, RNH 2 in which R is either aromatic or aliphatic group, such as methylamine, propylamine and
phenylethylamine, which can condense with formaldehyde to from a new N-C bond
In this work, the Ni(II) complex containing the 14-membered tetraaza macrocyclic ligands has been
synthesized in a one-pot reaction involving nikel(II) chloride, ethylenediamine, formaldehyde and butylamine in
95% absolute ethanol.
Experimental
Materials and Method
NiCl2•6H2O, ethylenediamine, formaldehyde, butylamine and perchloric acid were all purchased from
commercial source and used as received. Caution! Perchlorate salts of metal complexes are potentially explosive.
Only a small amount material should be prepared, and it should be handled with care. IR spectra (4000 - 400
cm-1) were recorded with FT - IR spectrometer as a KBr disk. The visible spectra were recorded with a Shimadzu
Lambda-1600 UV - Vis spectrophotometer in DMSO. Single crystal suitable for x-ray crystallographic analyses
were obtained by the slow evaporation of solvent from the acetonitrile : ethanol solution of complex at room
temperature. X-ray data for complex were collected at 293 K on a Bruker SMART APEX CCD area-detector
diffractometer with graphite monochromated Mo Kα - radiation (K = 0.71073 Å). The data integration and
reduction were processed with SAINT software. An empirical absorption correction was applied
to the collected reflections with SADABS program The linear absorption coefficients, scattering factors
for the atoms and the anomalous dispersion corrections were taken from the International Tables for x-ray
crystallography. All the structure was solved by the direct method using SHELXS-97 program [1]
and was refined on F2 by the full-matrix least-squares technique using the SHELXL-97 program. Figures were
drawn using Mercury - 3.0 [2] and Diamond - 3.0 [3]
3
วารสารมหาวิทยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
Synthesis of [NiL](ClO4)2
168
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
จากงานประชุTo
มวิชaาการระดั
ชาติ มหาวิethanol
ทยาลัยทัก(10
ษิณ ครั
้งที่ 22
2555 ·6H O (2.3058 g, 10 mmol) were added 99%
95% บabsolute
mL)
of ปีNiCl
2
2
ethylenediamine (1.3 mL, 20 mmol) in 95% absolute ethanol (10). After the mixture was completely clear blue
Synthesis
[NiL](ClO
) formaldehyde (2.2 mL, 40 mmol), with stirring until the mixture was completely dark
solutionofthen,
added 37%
42
blue To
a 95%and
absolute
ethanol (10 (2mL)mL,of 20
NiCl2•6H2O
10 mmol)
werestirring.
added 99%
solution
then butylamine
mmol) was(2.3058
added g,with
continuous
The ethylenedimixture of
amine
(1.3
mL,
20
mmol)
in
95%
absolute
ethanol
(10).
After
the
mixture
was
completely
clear
blue
reactants was refluxed for 24 h and the yellow solution was cooled to room temperature and filtered tosolution
remove
then, added 37% formaldehyde (2.2 mL, 40 mmol), with stirring until the mixture was completely dark blue
any insoluble
After (2themL,
amount
of concentrated
acid have
beenThe
added
dropwise,
the mixture
solution
and thensolids.
butylamine
20 mmol)
was added perchloric
with continuous
stirring.
mixture
of reactants
was
was
filtered
and
stored
at
room
temperature
to
form
yellow
solids.
Yield:

67%.
The
product
was
purified
refluxed for 24 h and the yellow solution was cooled to room temperature and filtered to remove any insolubleby
solids.
After the amount
of concentrated
perchloric
acidin have
dropwise,
mixture was
filtered andxrecrystallization
from acetonitrile
: absolute
ethanol
mole been
ratio added
1 : 1. The
physicaltheproperties
and analytical
stored
at room
temperature
ray data
are given
in Tableto1.form yellow solids. Yield: ≈ 67%. The product was purified by recrystallization
from acetonitrile : absolute ethanol in mole ratio 1 : 1. The physical properties and analytical x-ray data are given
in Table 1.
Results and Discussion
The tetraaza macrocyclic complex
has and
beenDiscussion
synthesized in a one – pot reaction involving Nickel
Results
chloride,
The tetraaza
macrocyclic
complex hasandbeen
synthesized
a onein– Scheme
pot reaction
involving
Nickelcomplex
chloride,is
ethylenediamine,
formaldehyde
butylamine
as inshown
1. The
synthesized
ethylenediamine,
and butylamine
as shown
1. The
synthesized
complex
is found
be
found to be air formaldehyde
stable and insoluble
in water, but
solubleininScheme
some polar
solvents,
for instance
MeCN,
DMFto and
air stable and insoluble in water, but soluble in some polar solvents, for instance MeCN, DMF and DMSO. The
DMSO. The analytical data of the complexes and some physical properties are summarized in Table 1.
analytical data of the complexes and some physical properties are summarized in Table 1.
Where L = 1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane
Where L = 1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane
Scheme 1. Synthesis of [NiL](ClO4)2
Scheme 1. Synthesis of [NiL](ClO4)2
4
วารสารมหาวิทยาลัยทักษิณ
การสังเคราะห์ และโครงสร้างผลึก
169
ปีที่ 15 ฉบั
บที่ 3 ฉบับพิligands
เศษ 2555
สุTable
รชัย คงชู
และคณะproperties and analytical data of nickel(II) complexes containing tetraaza
4
1. Physical
macrocyclic
จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั้งที่ 22 ปี 2555
Empirical
Melting
Complex
Reaction
Colour
Table 1. Physical properties and analytical data of nickel(II) complexes
containing tetraaza
ligands
formula
point (omacrocyclic
C)
Table 1. Physical properties and analytical data of nickel(II) complexes containing tetraaza macrocyclic ligands
NiCl2•6H2O + 2C2H8N2 + 4CH2O
C16HEmpirical
yellow
[NiL](ClO4)2
 223
38O8N6Cl2Ni
Melting
+
2C
H
N
+
HClO
4 Reaction
11 2
4
Complex
Colour
formula
point (oC)
Infrared spectra NiCl2•6H2O + 2C2H8N2 + 4CH2O
C16H38O8N6Cl2Ni
[NiL](ClO4)2
yellow
 223
+ 2C4H11N2 of
+ HClO
The preliminary identification
[NiL](ClO
)4 2 complex was done from their IR spectra in Figure 1.
4
There arespectra
IR frequencies of the macrocyclic complex to be shown the presence of sharp band in the 3207 cm-1
Infrared
Infraredassignable
spectra to the coordination of secondary amine stretching mode. The absence of a band in the regions
region,
The preliminary
identification of [NiL](ClO4)2 complex was done from their IR spectra in Figure 1.
The
preliminary
of [NiL](ClO
done frommoiety,
spectra
in Figure
1. -1
-1
There
IR frequencies
ofidentification
the
macrocyclic
complex
becomplex
shownofwas
thealdehyde
presence
oftheir
sharpIRfurther
band
inconfirms
the
3207 the
cm
1720 are
– 1740
cm , which
is characteristic
(C=O)to4)2carbonyl
There are
IR frequencies
of the macrocyclic
complex
to bestretching
shown the presence
of sharp ofband
in the 3207
cm-1
region,
assignable
to regions
the coordination
of secondary
amine
The absence
the regions
condensation.
In-1the
1384 – 1466
cm-1 and 2874
– 2961 cm-1,mode.
respectively,
the (Ca- band
N) andin (C
– H)
is characteristic
ν(C=O) amine
carbonyl
of aldehyde
furtherofconfirms
1720
cm , towhich
region,– 1740
assignable
the coordination
of secondary
stretching
mode.moiety,
The absence
a band inthethecondensaregions
modes are found. In addition it is -1apparent that there is -1considerable broadening and splitting in the region
-11384 – 1466 cm and 2874 – 2961 cm , respectively, the ν(C - N) and ν(C – H) modes are
tion.
In–the1740
regions
1720
cm1100
, which
is characteristic
aldehyde
moiety,
furtherareconfirms
the
peaks
at(C=O)
1089 andcarbonyl
1115 cmof-1 and
in which
these
regions
assigned
to
centered
around
cm-1 with
found. In addition it is apparent
thattwothere
is considerable
broadening
splitting
in
the
region
centered
around
-1
-1
-1
condensation.
In
the
regions
1384
–
1466
cm
and
2874
–
2961
cm
,
respectively,
the
(C
N)
and
(C
–
H)
perchlorate
ions.two
An peaks
impartant
feature
the appearance
of a new
of peak
cm attributable
at 1089
andis1115
cm-1 in which
theseband
regions
are intensity
assignedatto506
perchlorate
ions. An
1100
cm-1 with
modes
are
found.
In
addition
it
is
apparent
that
there
is
considerable
broadening
and
splitting
in
the
-1
which
impartant
is the
appearance
of a new band
of peak intensity
at 506 cm attributable to ν(Ni - N)region
to (Ni - feature
N) which
assigns
for the involvement
of nitrogen
in coordination.
-1
-1
with
two
peaks
at
1089
and
1115
cm
in
which
these
regions
are
assigned
to
centered
around
1100
cm
assigns for the involvement of nitrogen in coordination.
perchlorate ions. An impartant feature is the appearance of a new band of peak intensity at 506 cm-1 attributable
to (Ni - N) which assigns for the involvement of nitrogen in coordination.
complex
Figure1.1. The
TheIR
IR spectrum
spectrum ofof [NiL](ClO
[NiL](ClO4))2 complex
Figure
42
Figure 1. The IR spectrum of [NiL](ClO4)2 complex
วารสารมหาวิทยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
170
5
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
จากงานประชุ
มวิชาการระดั
บชาติ มหาวิ
ทยาลัยทักษิ4ณ)2 ครั้งที่ 22 ปี 2555
Crystal structure
description
of [NiL](ClO
The ORTEP drawing view of the molecular structure and labelling scheme are given in Figure 2.
Crystallographic
data are givenofin[NiL](ClO
Table 2. The
Crystal
structure description
) comple crystallizes in the triclinic and space group P 1 . In the
42
2+
Ni(II) iondrawing
is coordinated
secondary
amine nitrogen
atomsscheme
of the macrocyclic
cation,ThetheORTEP
view ofbythefour
molecular
structure
and labelling
are given inligand
Figure[NiL]
2. Crystal
lographic
are givengeometry
in Table about
2. TheNi(1)
comple
in the
and space
groupamine
P 1. Inadopts
the transcation, the
and thedata
coordination
is acrystallizes
square-planar.
Thetriclinic
macrocyclic
secondary
and the
Ni(II)
ion is coordinated
by four secondary
aminerings
nitrogen
atomschair
of the
macrocyclicThese
ligandpendant
[NiL]2+butyl
II configuration
with six-membered
macrocyclic
adopting
conformations.
coordination
geometry
aboutreported
Ni(1) isfora square-planar.
The macrocyclic
adoptsNi-N
trans-II
groups are similar
to those
the nickel(II) complex
(Yan, Z. et secondary
al, 2009). amine
The average
configuration
macrocyclic
ringstoadopting
chairÅ ofconformations.
Thesemacrocyclic
pendant butyl
groups
(macrocycle)with
bondsix-membered
length of 1.9310(18)
Å is close
the ca. 1.92
other square-planar
nickel
are similar to those reported for the nickel(II) complex [4] The average Ni-N (macrocycle) bond
complex (Yan, Z. et al, 2009). The Ni-N bond lengths are 1.9306(18) to 1.9315(18) Å and the bite angle of five
length of 1.9310(18) Å is close to the ca. 1.92 Å ofo other square-planar macrocyclic nickel complex
87.04(8) and
92.96(8) , respectively.
valuesofarefive
similar
those in
[4]andThesix-membered
Ni-N bond chelate
lengthsrings
are are
1.9306(18)
to 1.9315(18)
Å and the These
bite angle
and tosix-membered
the related
macrocyclic
complex. respectively.
The average These
C-N bond
length
involvingto bridgehead
chelate
rings are
87.04(8) Ni(II)
and 92.96(8)o,
values
are similar
those in thetertiary
relatednitrogen
macrocyclic
atom
N(3)
is
1.427(3)
Å,
which
is
shorter
than
the
normal
C-N
single
bond
length
[1.469(14)
Å].
Large
C-N-C Å,
Ni(II) complex. The average C-N bond length involving bridgehead tertiary nitrogen atom N(3) is 1.427(3)
o
which
shorter than
single
length [1.469(14)
Large shortening
C-N-C angle
involving
N(3) are
. Similar
of the
bond length
angleisinvolving
N(3)the
arenormal
found toC-N
in the
rangebond
110.83(18)
- 111.15(19)Å].
found
in the range
- 111.15(19)o.
Similar shortening
bondhave
length
flatteringforofother
the bond
and toflattering
of the110.83(18)
bond angles
involving uncoordinated
tertiaryof the
amine
beenandobserved
angles
involving
uncoordinated
tertiary
complexes
(Ahmad
Husain et al.,
2011).amine have been observed for other complexes [5]
Table
complex.
Table2. 2.Crystal
Crystaldata
dataand
andstructure
structurerefinement
refinement for
for Ni(II)
Ni(II) complex.
Identification code
Empirical formula
Formula weight
Temperature
Wavelength (Å)
Crystal system
Space group
a, b, c
, , 
Volume (Å3)
Z
calc (g/cm-1)
Crystal size (mm)
Final R indices
[I>2(I)]
R indices (all data)
Ni(II) complex
C16H38Cl2N6NiO8
572.13
293(2) K
0.71073
Triclinic
P1
8.2987(5), 8.4300(5), 10.1648(6) Å
92.2540(10)o, 94.8790(10)o, 117.3230(10)o
627.01(6)
1
1.515
0.27 x 0.126 x 0.107
R1 = 0.0315, wR2 = 0.0898
R1 = 0.0328, wR2 = 0.0911
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
171
วารสารมหาวิท6ยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั6้งที่ 22 ปี 2555
Figure 2. ORTEP view of the molecular structure (showing 50% thermal ellipsoids), along with the atomic
Figure 2. ORTEP
view of the molecular structure
(showing 50%
50% thermal ellipsoids), along with the atomic
Figure 2. ORTEP view of the molecularnumbering
structure (showing
scheme. thermal ellipsoids), along with the atomic
numbering
scheme.
numbering scheme.
The bond angles in perchlorate ion at O-Cl(1)-O are found to be in the range of 106.3(2) –
The bondo while
angles
inbonddistances,
perchlorate
ionareatfound
O-Cl(1)-O
arerange
found
to betotoin1.432(2)
of perchlorate
106.3(2)
The
angles inCl-O
perchlorate
ionto atbe O-Cl(1)-O
are1.408(2)
found
bethein range
theÅ.range
of 106.3(2)–ion
–113.08(15)o
113.08(15)
bond
in the
The
o
113.08(15)
while are
bondthefound
distances,
found
to beO(1),
in thewhich
rangeto1.408(2)
to 1.432(2)
The perchlorate
ion indicates at
while bond
distances,
Cl-O
be
inarethe
range
1.408(2)
1.432(2)
Å.coordinated
TheÅ. perchlorate
indicates
at lengthening
of
Cl –toOCl-O
bonds
involving
were
weakly
to the Niion
atom
indicates
at
lengthening
of
the
Cl
–
O
bonds
involving
O(1),
which
were
weakly
coordinated
to
the
Ni
atom
lengthening
the =Cl2.875(35)
– O bonds
whichlength
werewas
weakly
coordinated
to the
Ni atom shorter
[Ni(1) – O(1) =
[Ni(1) of– O(1)
Å]. involving
The Cl(1) –O(1),
O(1) bond
1.408(2)
Å, which was
significantly
[Ni(1)
–
O(1)
=
2.875(35)
Å].
The
Cl(1)
–
O(1)
bond
length
was
1.408(2)
Å,
which
was
significantly
shorter
2.875(35)
The Cl(1)
bondCllength
was 1.432(2)
1.408(2)Å.Å, which was significantly shorter than the average of
thanÅ].
the average
of the– O(1)
other three
– O bonds,
other three
the other threethan
Cl the
– Oaverage
bonds,of the
1.432(2)
Å. Cl – O bonds, 1.432(2) Å.
) . Ni (green) atoms are shown as small spheres of arbitrary radii.
Figure 3. Unit
cell3.diagrams
of [NiL](ClO
Figure
Unit cell diagrams
of [NiL](ClO
4 2 4)2. Ni (green) atoms are shown as small spheres of arbitrary radii.
Figure 3. Unit cell diagrams of [NiL](ClO4)2. Ni (green) atoms are shown as small spheres of arbitrary radii.
วารสารมหาวิทยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
172
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
7
จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัยทักษิณ ครั้งที่ 22 ปี 2555
A view of hydrogen bonds is present in the structure as shown in Figure 4. Selected bond lengths and
A viewangles
of forhydrogen
bonds is present in the structure as shown in Figure 4. Selected bond lengths and
hydrogen bonding are summarized in Table 3.
angles for hydrogen bonding are summarized in Table 3.
Figure 4. View of the N-H···O hydrogen bonding in structure [NiL](ClO ) .
Figure 4. View of the N-H•••O hydrogen bonding in structure [NiL](ClO4)24. 2
Figure 4. View of the N-H···O hydrogen bonding in structure [NiL](ClO4)2.
Table 3. Selected hydrogen bonds for [NiL](ClO4)2 [Å and o].
Table 3. Selected hydrogen bonds for [NiL](ClO4)2 [Å ando o].
Table 3. Selected hydrogen bonds for [NiL](ClO4)2 [Å and ].
D-H...A
d(D-H) d(H...A)
D-H...A
d(D-H) d(H...A) d(D...A)
N(2)-H(2)...O(2)#1
0.894(17)2.177(19)
2.177(19)
N(2)-H(2)...O(2)#1 0.894(17)
3.030(3)
N(1)-H(1)...O(4)#2 0.878(17)
3.031(3)
N(1)-H(1)...O(4)#2
0.878(17) 2.35(2)2.35(2)
N(1)-H(1)...O(1) 0.878(17) 2.56(2) 3.134(3)
N(1)-H(1)...O(1)
0.878(17) 2.56(2)
#1 -x+1,-y+1,-z #2 -x+1,-y+2,-z
#1 -x+1,-y+1,-z#2 -x+1,-y+2,-z
#2 -x+1,-y+2,-z
#1 -x+1,-y+1,-z
d(D...A)
<(DHA)
3.030(3)
159(2)
135(2)
3.031(3)
124(2)
3.134(3)
<(DHA)
159(2)
135(2)
124(2)
Visible spectra
The electronic spectral data (Figure 5.) of yellow complex, [NiL](ClO4)2 which is soluble in DMSO
Visible spectra
show
absorption
with the max = 452 nm which means assigned to d – d transition of Ni(II) ions.
Visible spectra
The electronic
spectral
data (Figure
of yellow
complex,
[NiL](ClO
is soluble
in DMSO
4)2 which
) which
is soluble
in DMSO
show
The electronic
spectral
data (Figure
5.) of 5.)
yellow
complex,
[NiL](ClO
42
=
452
nm
which
means
assigned
to
d
–
d
transition
of
Ni(II)
ions.
show
absorption
with
the

nm which means assigned to d – d transition of Ni(II) ions.
absorption with the λmax = 452max
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
173
วารสารมหาวิทยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
8
จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัย ครั้งที่ 22 ปี 2555
Figure5.5.The
Thevisible
visiblespectrum
spectrumofof[NiL](ClO
[NiL](ClO4)24)2
Figure
Conclusions
Conclusions
In this work, a novel 14 membered tetraaza macrocyclic complex has been synthesized in a one – pot
this work, a novel
14 membered
tetraaza macrocyclic
complex
hasThe
beenformation
synthesized
one – pot
reaction by In
ethylenediamine,
butylamine,
formaldehyde
and nickel(II)
chloride.
of inthea proposed
reaction by framework
ethylenediamine,
butylamine,
formaldehyde
and nickel(II)
chloride. The
formation
macrocyclic
has been
confirmed
by the appearance
of secondary
amine
bands ofin the
theproposed
IR and
corresponding
structure
the confirmed
single crystal
diffraction analysis
and visible
macrocyclic crystal
framework
has inbeen
by x-ray
the appearance
of secondary
aminestudies.
bands The
in theNi(II)
IR ion
and
hascorresponding
square-planarcrystal
coordination
foursingle
nitrogen
atoms
the macrocyclic
withstudies.
weaklyThe
coordinated
structurebyin the
crystal
x-rayofdiffraction
analysisligand,
and visible
Ni(II) ion
perchlorate
ions
in
trans
position.
has square-planar coordination by four nitrogen atoms of the macrocyclic ligand, with weakly coordinated
perchlorate ions in trans position.
Acknowledgements
The auther is grateful to Dr.Anob Kantacha for improvement paper and also grateful to Dr.Saowanit
Saithong, Department of Chemistry, Faculty ofAcknowledgements
Science Prince of Songkla University for crystal x-ray data and
this work was
by Chemistry
laboratory,
of Chemistry,
of Science,
Thaksin
Thesupported
auther is grateful
to Dr.Anob
KantachaDepartment
for improvement
paper andFaculty
also grateful
to Dr.Saowanit
University
Saithong, Department of Chemistry, Faculty of Science Prince of Songkla University for crystal x-ray data and
this work was supported by Chemistry laboratory, Department of Chemistry, Faculty of Science, Thaksin
University
References
Brandenburg, K. and Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
He, Y., Kou, H. Z., Li, Y., Zhou, B. C., Xiong, M. and Li, Y. (2003). One - pot template synthesis and crystal
structure of two new polyaza copper(II) complexes. Inorganic Chemistry Communication. 6(1), 38-
วารสารมหาวิทยาลัยทักษิณ
ปีที่ 15 ฉบับที่ 3 ฉบับพิเศษ 2555
174
การสังเคราะห์ และโครงสร้างผลึก
สุรชัย คงชู และคณะ
จากงานประชุมวิชาการระดับชาติ มหาวิทยาลัยทักษิณ ครั้งที่ 22 ปี 2555
References
[1] Sheldrick, G.M. (2008). A short history of SHELX. Acta Crystallographica Section A. 64(1), 112-122.
[2] Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L.,
Taylor, R., van de Streek, J. and Wood, P. A. (2008). Mercury CSD 2.0 - New Features for the Visualization
and Investigation of Crystal Structures. Journal of Applied Crystallography. 41(2), 466-470.
[3] Brandenburg, K. and Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
[4] Yan, Z. and Li, T. (2009). Crystal structure of (1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) nickel(II)
deperchlorate, [Ni(C6H26N6)][ClO4]2. Zeitschriftfür Kristallographie New Crystal Structure. 224(3),
505-506.
[5] Husain, A., Nami, S. A. A. and Siddiqi, K. S. (2011). The synthesis, crystal structures and antimicrobial studies
of C-methyl-substituted hexaaza macrocycle of Cu(II) having aromatic pendant arm. Applied Organome
tallic Chemistry. 25(10), 761-768.
[6] He, Y., Kou, H. Z., Li, Y., Zhou, B. C., Xiong, M. and Li, Y. (2003). One - pot template synthesis and crystal
structure of two new polyaza copper(II) complexes. Inorganic Chemistry Communication. 6(1), 38-42.
[7] Kang, S. G., Ryu, K., Jung, S. K. and Kim, J.(1999). Template synthesis, crystal structure, and solution behavior
of a hexaaza macrocyclic nickel(II) complex containing two N-aminoethyl pendant arms. Inorganic
Chimica Acta. 293(2), 140-146.
[8] Liu, J., Zhang, H., Chen, C., Deng, H., Lu, T. and Ji, L. (2002). Interaction of macrocyclic copper(II) complexes
with calf thymus DNA: effects of the side chains of the ligands on the DNA-binding behaviors. Dalton
Transactions. 1(3), 114-119.
[9] Raman, N., Dhaveethu, J. and Sakthivel, A. (2008). Template synthesis of novel 14-membered tetraazamacro cyclic transition metal complexes: DNA cleavage and antimicrobial studies. Journal of the Chilean Chemical Society. 53(3), 1568-1571.
[10] Shakir, M., Azim, Y., Hamida. T. N., Begum, N., Chingsubam, P. and Siddiqi M. Y. (2006). Synthesis,
physicochemical and antimicrobial screening studies on 14 and 16-membered hexaazamacrocyclic
complexes bearing pendant amine groups. Journal of the Brazilian Chemical Society. 17(2), 272-278.
[11] Shakir, M., Islam, K. S., Mohamed, A. K., Shagufta, M. and Hasan. S. S. (1999). Macrocyclic complexes of
transition metals with divalent polyaza units. Transition Metal Chemistry. 24(5), 577-580.
[12] Shakir, M. and Varkey, S. P. (1994). Six-coordinate dinuclear hexaazamacrocyclic complexes of nickel(II),
copper(II) and zinc(II) with tetraamide group ligands. Transition Metal Chemistry. 19(6), 606-610.
[13] Sheldrick, G.M., SHELXL-97, SAINT and SADABS. (2003). Bruker AXS Inc., Madison, Wisconsin, USA.
[14]Suh, M. P., Shim, B. Y. and Yoon, T. S. (1994). Template Syntheses and Crystal Structures of Nickel(II) Com
plexes of Hexaaza Macrocyclic Ligands with Pendant Functional Groups: Formation of a Coordination
Polymer. Inorganic Chemistry. 33(24), 5509-5514.