Module V Laplace Transforms Prepared by Reji P R Assistant professor SNGCE Kadayiruppu Lapace Transforms Let f(t) be a continuous function defined for all t≥0,then the Laplace transform of f(t) is defined as L{f(t)} = ∫ f(t) dt, provided the integral exists. Properties 1) L{f(t)+g(t)} = L{f(t)+g(t)} 2) L{c f(t)} = cL{f(t)},where c being a constant. Laplace Transform of some elementary Functions:1) L (1) = ,s>0 Proof:L(1) = ∫ 2) L( )= dt = { }0 = s>a 3) L( 4) L(sinat)= 5) L(cos at)= 6) L( 7) L(cosh at) = 8) L(sinh at)= First Shifting theorem:If L{f(t)} = f(s) then L{ 1) L( sinbt)= 2) L( cosbt)= f(t)} = f(s-a) 3) sinhbt)= 4) coshbt)= 5) )= Find the Laplace transform of the following 1) = L{ }= = 2) f(t) = ,when 0<t<T,f(t) = 1 ,when t>T L{f(t)}= ∫ dt + ∫ = Inverse Laplace Transforms If L(f(t)) = f(s) then f(t) is called the inverse Laplace transform of f(s) and is denoted by L-1 (f(s)) = f(t). Some formulas:1) L-1 { } = 1 2) L-1 { }= 3) L-1 { } = 4) L-1 { if n is a positive integer. = 5) L-1 { } = sin at 6) L-1 { } = sin hat 7)L-1 { } = cos at 8) L-1 { } = cos hat 9) L-1 { }= sin bt 10) L-1 { }= cos bt 11) L-1 { }= sinh bt 12) L-1 { }= cos h bt Problems:1) Find the inverse Laplace transform of = = L-1 ( = { } = + { } = 2) Find the inverse Laplace transform of = + ie, A = 2 ,B=-2,C=6,D=3 ie,L-1{ 2L-1{ { } { } =2 3) Find = s{ }= L-1{ = }= coshhat+cosat) Find the inverse Laplace transform of the following 1) 2) LAPLACE TRANSFORMS OF DERIVATIVES Theorem If f ’(t) be continuous and L {f(t)} = f(s) , then L{f ’(t)} = s f(s) – f(0) , provided Lt [ e –st f(t)] = 0 t→∞ Proof:∞ L{f ‘ (t)} = ∫ e –st f ‘ (t) dt 0 ∞ ∞ = [ e –st f(t) ] - ∫ -s e –st f(t) dt 0 0 ∞ = Lt [ e –st f(t)] - f(0) + s ∫ e –st f(t) dt t→∞ 0 = s f(s) – f(0) Generalisation If f(t) and its first (n-1) derivatives be continuous , then L{ f(t)} = s n f(s) – s n-1 f(0) – s n-2 f ‘ (0) - …….- f n-1 (0) In particular L{ f ’’(t)} = s2 f(s) – sf(0) – f ’(0) L {f ’’’(t) } = s3f(s) – s2 f(0) – s f ‘(0) – f ‘’(0) LAPLACE TRANSFORMS OF INTEGRALS t t If L {f(t)} = f(s) , then L{ ∫ f (u) du } = 1 f(s) or L-1 {1 f(s) } = ∫ f (u) du 0 s s 0 Proof:Ф ( t) = ∫ f(u) du , then Ф’(t) = f(t) and f(0) = 0 L { Ф’(t)} = s Ф( s) – Ф(0) 1) => sL{ f(t)} = s Ф(s) => f(s) = s L{Ф(t)} => L{Ф(t)} = 1 f(s) t s t ie, L{ ∫ f (u) du } = 1 f(s) or L-1 {1 f(s) } = ∫ f (u) du 0 s s 0 Find the inverse Laplace transforms of i) 1 ii) 1 s3( s2 + a2) s (s + 1 )3 i) Since L -1 [ 1 / ( s2 + a2) ] = 1/a sin at t -1 L { 1 = ∫ 1/a sin au du = 1/a2 ( 1 – cos at) s(s2+a2) 0 t L-1 { 1 } = ∫1/a2 ( 1 – cos au) du = 1/a2 ( t – sin at ) s2(s2+a2 ) 0 a t L-1 { 1 } = ∫ 1 /a2 ( u – sin au ) du = 1/a2 [ t2 + cos at – 1 ] s3(s2+a2 ) 0 a 2 a2 a2 -1 –t 2 ii) since L [ 1 ] =e t 3 (s + 1) 2! t -1 L [ 1 = 1 ∫ e – t t2 dt = 1 – e – t { 1 + t + t2 } s ( s +1)3 2 0 2 MULTIPLICATION BY tn If L {f(t)} = f(s), then L{ tn f(t) } = (-1)n dn [f(s)] , where n = 1,2,3 …. dsn Proof:- We prove the theorem by induction t L {f(t)} = f(s) => ∫ e – st f(t) dt = f(s) 0 Differentiating both sides with respect to s , we have ∞ d ∫ e – st f(t) dt = d[f(s)] or ∂ [e – st f(t)] dt = d[f(s)] ds 0 ds ∂s ds ∞ or ∫ -t e – st f(t) dt = d[f(s)] or ∂ e – st [ t f(t)] dt = - d[f(s)] 0 ds ∂s ds Or L [ t f(t) ] = - d[f(s)] Which confirms the truth of the theorem for n = 1 ds Now assume the theorem to be true for n = m, so that ∞ m m m L{ t f(t) } = (-1) d [f(s)] Or ∫ e – st t m f(t) dt = (-1)m dm [f(s)] dsm 0 dsm Differentiating both sides w.r.to s, we have ∞ d ∫ e – st tm f(t) dt = (-1)mdm+1 [f(s)] ds 0 ds m+1 ∞ Or ∫ ∂ [e – st tm f(t) ]dt = (-1)mdm+1 [f(s)] 0 ∂s ds m+1 ∞ Or ∫ [- t e – st tm f(t) ]dt = (-1)mdm+1 [f(s)] 0 ds m+1 ∞ Or ∫ e – st [ tm+1 f(t) ]dt = (-1)m+1d m+1 [f(s)] 0 ds m+1 Or L [tm+1 f(t) ] = (-1)m+1d m+1 [f(s)] ds m+1 Which shows that the theorem is true for n = m+1 Hence by mathematical induction the theorem is true for all n. Cor. If L -1 { f (s)} = f(t) , then L-1 [ d n ] = (-1)n tn f(t) dsn In particular L -1 { d [ f(s)] } = (-t) f(t) ds DIVISION BY t ∞ If L {f(t)} = f(s), then L{1 f(t) } = ∫ f(s)ds, Provided the integral exists t s Proof:∞ We have f(s) = ∫ e – st f(t) dt 0 Integrating both sides w.r. to s from s to ∞ , we have ∞ ∞∞ ∫f(s) ds = ∫ [ ∫ e – st f(t) dt ] ds s s 0 changing the order of integration on the right side , we have ∞ ∞∞ ∞ – st ∫f(s) ds = ∫ [ ∫ e ds ]f(t) dt = ∫ e – st f(t) dt = L { 1 f(t)} s PROBLEMS 1) If L { t sin ωt }= 0 s 0 t t 2ωs , evaluate L { 2 cos ωt – ωt sin ωt } (ω 2 + s2)2 L{ f ’’(t)} = s2 f(s) – sf(0) – f ’(0) => L { 2 ωcos ωt – ω2t sin ωt }= s2 * 2ωs - s.0-0 = 2ωs3 (ω 2 + s2)2 (ω 2 + s2)2 3 => L { 2 cos ωt – ωt sin ωt } = 2s (ω 2 + s2)2 2) Find the inverse Laplace transforms of 1 . s3 (s2+a2) 1 ] = 1 sin at s + a2 a t -1 so L [ 1 ] = ∫ 1 sin au du = 1/a2 ( 1-cos at) s(s2 + a2) 0 a since L -1 [ 2 so L -1 [ t 1 ] = ∫ 1 ( 1-cos au) du = 1/a2 (t - sin at) s2(s2 + a2) 0 a2 a so L -1 [ 1 ] = ∫ 1 (u - sin au) du = 1/a2 (t2 + cos at - 1) 2 2 s ( s + a ) 0 a2 a 2 a2 a2 3 3) Find the Laplace transforms of t3 e – 3 t Since L (e – 3 t ) = 1 s+3 L (t3 e – 3 t) = (-1)3 d3 { 1 } = 6. ds3 s+3 ( s + 3)4 4) Find the Laplace transforms e – a t – e – bt t Since L { e – a t – e – bt } = 1 - 1 s +a s +b ∞ L { e – a t – e – bt } = ∫ [ 1 - 1 ] ds t s s +a s +b ∞ = log[ s + a ] s s+b = log s+b s +a 5) Find the Laplace transforms of t sin3t cos 2t L (sin3t cos 2t) = ½ L ( sin 5t + sin t) =½[ . 5 . +. 1. ] s 2 + 52 s2 + 1 L (t sin3t cos 2t) = - d {½ [ . 5 . + . 1 . ds s 2 + 52 .. s2 + 1 = ]} . 5s . + . s . ( s2 + 25 )2 (s2 +1)2 6) ) Find the Laplace transforms of e - t sint t . 1 . ( s+1)2 +1 ∞ t L (e - sint) = ∫ . 1 . ds = π t s ( s+1)2 +1 2 L(e - t sint) = - tan -1 (s+1) = cot -1 (s+1) CONVOLUTION THEOREM If t L-1{f(s)}= f(t), L-1 { g(s)} = g(t) , then L-1{ f(s)g(s)} = ∫ f(u)g(t-u)du = f*g 0 -1 1) Apply Convolution theorem to evaluate L { . s . } (s2+a2)2 Since L-1 {. s . } = cos at and L -1 { . 1 .} = 1/a sinat s2 + a2 s2 + a2 By Convolution theorem , we have L-1 {. s . }= L -1[ . s . . 1. } s2 + a2 s2 + a2 s2 + a2 t = ∫ cos a ( t – u)sin audu 0 a = 1 t sin at 2a APPLICATION TO DIFFERENTIAL EQUATIONS 1) Solve the equation d3y + 2 d2y – dy – 2y = 0 , dy = 2 , d2y = 2 at t = 0 dt3 dt2 dt dt dt2 The given equation is y’’’ + 2y’’ – y1 – 2y = 0 Taking the laplace transform on both sides , we get [s3y – s2 y(0) – s y’(0) – y’’(0)] + 2[s2y – s y(0)- y’(0)] – [sy – y(0)]- 2y = 0 Using the given conditions y(0) = 1 , y’(0) = 2,y’’(0) = 2 we get (s3+2s2-s-2)y –s2-2s-2-2s-4+1=0 (s3+2s2-s-2)y = s2+4s+5 y = s2+4s+5 = . s2+4s+5 . (s3+2s2-s-2) ( s -1)(s +1)(s +2) =. 5 .–1 +. 1 . 3(s -1) s+1 3(s+2) Taking the inverse Laplace transform on both sides , we get y = 1/3[ 5et + e -2t] – e-t 2) Solve the simultaneous equations (D2 – 3)x – 4y = 0 (D2 +1)y +x = 0 for t > 0, given that x = y = dy = 0 and dx = 2 at t = 0 dt dt Taking the laplace transform of the given equations, we get [s2x– sx(0) –x’(0) – 3x – 4y] =0 (s2 -3)x- 4y = 0 ……………..(1) 2 [x + s y – s y(0) – y’(0) +y = 0 x + (s2 + 1)y = 0……………..(2) Solving (1) & (2) we get x = 2(s2 +1) = . 1 . +. 1 . ( s2 – 1) 2 (s – 1) 2 ( s + 1) 2 y = -. 2 . = - ½ [ . 1 - 1 .- 1 . + . . 1 ] 2 2 2 2 (s – 1) ( s + 1) ( s – 1) ( s +1) ( s – 1) Taking the inverse Laplace transform on both sides , we get x = t et + t e –t = 2t [ et + e –t] = 2t cos ht 2 –t t t t y = -1/2 { e – e – t e + te } = et – e –t – t { et – e-t} =(1-t) sin ht 2 2 LAPLACE TRANSFORMS OF SOME OTHER USEFUL FUNCTIONS (1) Unit Step Function ( Heaviside’s Unit Function ) The unit step function u(t-a) is defined as u(t-a) = 0 for t < a =1 for t ≥ a, where a ≥0 As a particular case , u (t) = 0 for t < 0 = 1 for t ≥ 0 Laplace transform of Unit Step function ∞ ∞ ∞ L[ u(t-a)] = ∫e –st u(t-a) dt = ∫ e –st f(t-a)u(t-a)dt = ∫ e –s(u+a)f(u)du, where u = t - a 0 0 0 ∞ = e –as ∫ e-su f(u) du = e-as f(s) 0 1) Find the Laplace transforms of (t-1)2 u(t-1) Comparing (t-1)2 u(t-1) with f(t-a)u(t-a),we have a =1 and f(t) = t2 f(s) = L{f(t)} = 2/s3 L{(t-1)2 u(t-1)} = e –s f(s) = 2e-s/s3 2) Find the inverse Laplace transforms of e -2s s -3 Let f(s) = . . 1 . , then f(t) = e 3t s-3 L-1 { e -2s } = L-1 { e -2s f(s)} = f(t-2)u(t-2) = e 3(t-2)u(t-2) Periodic functions ∫ If f(t) is a periodic function with period T ,then L{f(t)} = f(t)dt Proof:L{f(t)} = ∫ f(t)dt= ∫ f(t)dt +∫ f(t)dt+……. Putting t=u,t=U+T,t=U+2T…..in the successive integrals. L{f(t)}= ∫ f(u+T)du+……. f(u)du +∫ Since f(u) = f(u+T)=f(u+2T)….we have L{f(t)}= ∫ f(u)du + = ( 1+ + ∫ = ∫ +….)∫ f(u)du+……. f(u)du f(t)dt 1)Find the Laplace Transform of the triangular wave function of period 2c given by f(t) = t , 0<t<c and f(t) = 2c-t,c<t<2c. L{f(t)} = ∫ f(t)dt = {∫ .tdt+∫ (2c-t)dt = Home work 1)Find the Laplace transform of the saw toothed wave function of period T ,defined by f(t) = ,for 0<t<T 2) Find the Laplace transform of the square wave function of period a defined as f(t) = 1,when 0<t<a/2 and f(t) = -1 ,when a/2 < t<a. **********************
© Copyright 2024