Bessel process killed upon leaving a half-line Kamil Bogus Wrocław University of Technology Probability and Analysis, 5 May 2015, Bedlewo ˛ Kamil Bogus Bessel process killed upon leaving a half-line Articles Kamil Bogus, Jacek Małecki Sharp estimates of transition probability density for Bessel process in half-line, Potential Analysis (2015), DOI 10.1007/s11118-015-9461-x. Kamil Bogus, Jacek Małecki Heat kernel estimates for the Bessel differential operator in half-line, arXiv:1501.02618, submitted. Kamil Bogus Bessel process killed upon leaving a half-line Bessel processes For µ ∈ R the one-dimensional diffusion process on (0, +∞) with infinitesimal generator 12 L(µ) , where L(µ) = d2 2µ + 1 d , + dx 2 x dx is called Bessel process with index µ. Kamil Bogus Bessel process killed upon leaving a half-line Bessel processes For µ ∈ R the one-dimensional diffusion process on (0, +∞) with infinitesimal generator 12 L(µ) , where L(µ) = d2 2µ + 1 d , + dx 2 x dx is called Bessel process with index µ. Example B(t) = (B1 (t) + x, B2 (t), . . . , Bn (t)) BM in Rn P– n 2 X (t) = ||B(t)|| = ((B1 (t) + x) + k =2 Bk2 (t))1/2 X (t) – Bessel process with index µ = n2 − 1, starting from x ≥ 0. Notation: n – dimension, µ – index, n = 2µ + 2. Kamil Bogus Bessel process killed upon leaving a half-line Modified Bessel function of the first kind For µ ∈ R and z ∈ C\(−R+ ) we define modified Bessel function of the first kind as Iµ (z) = ∞ z µ X 2 k =0 z 2k 1 . k !Γ(µ + k + 1) 2 Asymptotic behaviour of Iµ (z) can be described as follows ( zµ µ+2 ) for z → 0+ 2µ Γ(1+µ) + O(z Iµ (z) = . z √e (1 + O(1/z)) for z → ∞ 2πz Example r I1/2 (z) = Kamil Bogus 2 sinh(z) πz Bessel process killed upon leaving a half-line Transition probability density Transition probability density for Bessel process with index µ (with respect to the reference measure m(µ) (dy ) = y 2µ+1 dy ) is given by 2 xy 1 x + y2 −µ (µ) I|µ| , p (t, x, y ) = (xy ) exp − t 2t t where x, y , t > 0. Example p(1/2) (t, x, y ) = √ 1 1 2πt xy (x − y )2 (x + y )2 exp − − exp − 2t 2t Kamil Bogus Bessel process killed upon leaving a half-line Hitting times of Bessel process We denote the first hitting time of a given level a > 0 by (µ) Ta (µ) = inf{t ≥ 0 : Rt (µ) = a} (µ) and we write qx,a (t) for the density of Ta . Example (1/2) qx,1 (t) = x −1 1 (x − 1)2 √ exp − , x 2t 2πt 3 Kamil Bogus x > 1, t > 0 Bessel process killed upon leaving a half-line Hitting times of Bessel process - sharp estimates Theorem (Byczkowski, Małecki, Ryznar, 2013) Let µ 6= 0. For every x > 1 and t > 0 we have µ (µ) qx,1 (s) ≈ and (0) qx,1 (t) 1 (x − 1) 1 ∧ 2µ x 2 e−(x−1) /(2t) x 2|µ|−1 t 3/2 (t + x)|µ|−1/2 x −1 1 (x − 1)2 , ≈ √ exp − 2t x t 3/2 t < 2x, and for t ≥ 2x (0) qx,1 (t) x −1 1 + ln x 1 (x − 1)2 ≈ exp − x (1 + ln(t + x))(1 + ln(1 + t/x)) t 2t µ Here f ≈ g means that there exists constant c = c(µ) > 0 such that c −1 g ≤ f ≤ cg . Kamil Bogus Bessel process killed upon leaving a half-line Killed Bessel process We define Bessel process killed upon leaving the half-line ˜ (µ) = {R ˜ t : t ≥ 0} , corresponding to the (a, +∞) as a process R Bessel process R (µ) , where ( (µ) (µ) dla t < Ta Rt (µ) ˜ Rt = (µ) . ξ dla t ≥ Ta Here state ξ ∈ / (0, ∞) means "cemetary" and we assume that (µ) R0 = x > a ≥ 0. Main goal Sharp estimate of transition probability density for the killed Bessel process. Kamil Bogus Bessel process killed upon leaving a half-line Transition probability density for killed process The transition probability density of the Bessel process killed upon leaving the half-line (a, +∞) can be expressed by the Hunt formula in the following way (µ) (µ) pa (t, x, y ) = p(µ) (t, x, y ) − ra (t, x, y ) where x, y > a, t > 0. Here Z (µ) ra (t, x, y ) = t (µ) qx,a (s)p(µ) (t − s, a, y )ds. 0 Example (1/2) p1 (t, x, y ) 1 1 =√ 2πt xy (x − y )2 (x + y − 2)2 exp − − exp − 2t 2t Kamil Bogus Bessel process killed upon leaving a half-line (µ) Motivation to investigate pa (t, x, y ) PDE p(µ) (t, x, y ) is a solution of the heat equation 1 (µ) ∂t − L u=0 2 where L(µ) := d2 dx 2 + 2µ+1 d x dx is the Bessel differential operator. Harmonic analysis Operator L(µ) on (0, 1) plays an important rôle in research Fourier-Bessel heat kernels. Stochastic process (µ) pa (t, x, y ) is transition probability density of killed semigroup associated with Bessel process R (µ) . Kamil Bogus Bessel process killed upon leaving a half-line Main theorem - case µ 6= 0 Theorem (K. Bogus, J. Małecki, 2015) Let µ 6= 0. For every x, y > 1 and t > 0 we have µ (µ) p1 (t, x, y ) ≈ (x − 1)(y − 1) 1∧ t t 1∨ p(µ) (t, x, y ), xy where µ 1 (x − y )2 xy |µ|+1/2 −µ−1/2 p(µ) (t, x, y ) ≈ √ (xy ) exp − . 1∧ 2t t t Kamil Bogus Bessel process killed upon leaving a half-line Main theorem - case µ = 0 Theorem (K. Bogus, J. Małecki, 2015) Let µ = 0. For every x, y > 1 and t > 0 we have (0) p1 (t, x, y ) ≈ ln x ln y ln 3t 3t √ ln √ x+ t y+ t −1 2 1 x + y2 exp − t 2t whenever xy ≤ t, and (0) p1 (t, x, y ) ≈ 1 (x − 1)(y − 1) (x − y )2 √ 1∧ exp − t 2t xyt whenever xy ≥ t. Kamil Bogus Bessel process killed upon leaving a half-line The result of Q.S. Zhang Theorem (Q.S. Zhang, 2002) For every C 1,1 -bounded set D ⊂ Rn there exists constants c1 , c2 , T > 0 depending only on D such that c1 G(x, t; y , 0) 1 c2 |x − y |2 |x − y |2 ≤ ≤ exp − exp − t f (t, x, y ) c2 t t n/2 c1 t n/2 h i ) where f (t, x, y ) = ρ(x)ρ(y ∧ 1 and ρ(x) = dist(x, ∂D). t Here G stands for the heat kernel of Dirichlet Laplacian on set D ⊂ Rn . Kamil Bogus Bessel process killed upon leaving a half-line The result of P. Gyrya and L. Saloff-Coste Theorem (P. Gyrya, L. Saloff-Coste, 2011) Let D ⊂ X be a unbounded uniform domain and X be a Harnack – type Dirichlet space satisfying some technical assumptions. Then there exist constants c1 , c2 , c3 , c4 ∈ (0, +∞) such that for all t > 0 and x, y ∈ D c1 Px (TD > t)Py (TD > t)p(c2 t, x, y ) ≤ pD (t, x, y ) ≤ c3 Px (TD > t)Py (TD > t)p(c4 t, x, y ), where p(t, x, y ) is a global heat kernel. In our case: For µ > 0 and x, y > a > 0, (µ) µ (µ) (µ) pa (t, x, y ) ≈ Px (Ta (µ) (µ) > t)Py (Ta t >0 > t)p(µ) (t, x, y ), It is not true for xy ≥ t! Kamil Bogus Bessel process killed upon leaving a half-line xy ≤ t Methods used in the proof Hunt formula, Absolute continuity property of Bessel processes with different indices Strong Markov Property Scalling property of Bessel processes. Chapmann-Kolmogorov equations Inequalities involving ratios of Iµ (z) (µ) Sharp estimates of qx,a (s) and survival probabilities of Bessel processes Exact formula for the transition probability density for the Bessel process, with index µ = 1/2, killed on first hitting time in level a>0 Kamil Bogus Bessel process killed upon leaving a half-line What is next ? (µ) Asymptotics of pa (t, x, y ) for t → ∞, t → 0, . . . Kamil Bogus Bessel process killed upon leaving a half-line What is next ? (µ) Asymptotics of pa (t, x, y ) for t → ∞, t → 0, . . . Bessel process killed on exiting interval (a, b) Kamil Bogus Bessel process killed upon leaving a half-line What is next ? (µ) Asymptotics of pa (t, x, y ) for t → ∞, t → 0, . . . Bessel process killed on exiting interval (a, b) Killed Bessel bridges Kamil Bogus Bessel process killed upon leaving a half-line What is next ? (µ) Asymptotics of pa (t, x, y ) for t → ∞, t → 0, . . . Bessel process killed on exiting interval (a, b) Killed Bessel bridges Applications in harmonical analysis and PDE Kamil Bogus Bessel process killed upon leaving a half-line What is next ? (µ) Asymptotics of pa (t, x, y ) for t → ∞, t → 0, . . . Bessel process killed on exiting interval (a, b) Killed Bessel bridges Applications in harmonical analysis and PDE ... Kamil Bogus Bessel process killed upon leaving a half-line The End Thank You for attention ! Kamil Bogus Bessel process killed upon leaving a half-line References 1/5 Mathematical tables of integral, series,. . . M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas. Graphs and Mathematical Tables, Dover, New York, 9th edition (1972). I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, California, 7th edition (2007). Stochastic processes A. N. Borodin and P. Salminen, Handbook of Brownian Motion - Facts and Formulae, Birkhauser Verlag, Basel, 2. edition (2002). K. L. Chung, Z. Zhao, From Brownian Motion to Schrodinger’s Equation, Springer-Verlag, New York (1995). D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, New York, (1999). Kamil Bogus Bessel process killed upon leaving a half-line References 2/5 Modified Bessel functions A. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc. 53(3) (2010) 575-599. E. K. Ifantis, P. D. Siafarikas, Bounds for modifed Bessel functions, Rendiconti del Circolo Matematico di Palermo, Vol. 40, Issue 3 (1991), 347-356. A. Laforgia, P. Natalini, Some inequalities for modifed Bessel functions, Journal of Inequalities and Applications (2010), art. 253035, 10 pages. I. Nasell, Rational Bounds for Ratios of Modified Bessel Function, SIAM J. Math. Anal., vol. 9(1) (1978), 1-11. Kamil Bogus Bessel process killed upon leaving a half-line References 3/5 Hitting times of Bessel processes T. Byczkowski, M. Ryznar, Hitting distibution of geometric Brownian motion. Studia Math., 173(1) (2006), 19-38. Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Ind. 4B (2012) 91-95. Y. Hamana, H. Matsumoto, The probability distribution of the first hitting time of Bessel processes, Trans. Amer. Math. Soc., 365 (2013), 5237-5257. T. Byczkowski, J. Małecki, M. Ryznar, Hitting times of Bessel processes, Pot. Anal. vol. 38 (2013), 753-786. Kamil Bogus Bessel process killed upon leaving a half-line References 4/5 Heat kernel estimates E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, Cambridge University Press, vol. 92, Cambridge (1990). E. B. Davies", Intrinsic ultracontractivity and the Dirichlet Laplacian", J. Funct. Anal., vol. 100, (1991), 162–180. P. Gyrya, L. Saloff-Coste, Neumann and Dirichlet heat kernels in inner uniform domains, Asterisque (2011). L. Saloff-Coste, The heat kernel and its estimates., Adv. Stud. Pure Math., vol. 57 (2010), p. 405–436. Q. S. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians, J. Differential Equations, vol. 182 (2002), p. 416-430. Kamil Bogus Bessel process killed upon leaving a half-line References 5/5 Bessel process killed upon leaving a half–line or interval K. Bogus, J. Małecki Sharp estimates of transition probability density for Bessel process in half-line, Potential Analysis (2015), DOI 10.1007/s11118-015-9461-x. K. Bogus, J. Małecki Heat kernel estimates for the Bessel differential operator in half-line, arXiv:1501.02618, submitted (2015). ˙ J. Małecki, G. Serafin, T. Zórawik, Fourier-Bessel heat kernel estimates. arXiv:1503.02226, submitted (2015). A. Nowak, L. Roncal, Sharp heat kernel estimates in the Fourier-Bessel setting for a continuous range of the type parameter, Acta Math. Sin. (Engl. Ser.), vol. 30 p.437–444 (2014). Kamil Bogus Bessel process killed upon leaving a half-line
© Copyright 2025