Nuclear Reactions in Lattice EFT Gautam Rupak Mississippi State University Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Serder Elhatisari(Bonn) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NCSU) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn) Bethe Forum: Methods for Lattice Field Theory, Bonn, Germany Mar 24, 2015 Motivation and Outline • Reactions for Nuclear Astrophysics • Adiabatic projection method • neutron capture • proton-proton fusion • dimer-dimer scattering Reactions in lattice EFT • Consider: a(b, )c • Need effective “cluster” Hamiltonian -- acts in cluster coordinates, spins,etc. • Calculate reaction with cluster Hamiltonian. Many possibilities --- traditional methods, continuum EFT, lattice method Rupak & Lee, PRL 2013, arXiv:1302.4158 Pine, Lee, Rupak, EPJA 2013, arXiv:1309.2616 Rupak & Ravi, PLB 2014, arXiv:1411.2436 Adiabatic Projection Method ~ Initial state |Ri ~ ⌧ =e Evolved state |Ri Microscopic Hamiltonian L3(A 1) Cluster Hamiltonian L3 -- acts on the cluster CM and spins ⌧H ~ |Ri Spin-1/2 Fermions g( † " " )( † # #) 1.5x106 ann ⇠ 19 fm, R ⇠ 1.4 fm anp ⇠ 24 fm, R ⇠ 1.4 fm Potassium-40 Regal et. al, Nature 2003 a 1.0x106 5.0x105 0 scattering length (ao) a g⇠ m r ] [i@t + 2m atom number L= † 2 2000 b 1000 0 -1000 -2000 -3000 215 220 225 B (G) 230 Neutron-Deuteron System = + +··· = + +··· T (p) = h(p) + Z 2⇡ 1 T (p) = µ p cot dqK(p, q)T (q) ip Neutron-Deuteron System −1 Convergence: L=7, b=1/100 MeV 25 E (MeV) 20 15 10 5 0 0 0.1 0.2 0.3 0.4 τ (MeV−1) 0.5 0.6 Pine, Lee, Rupak, EPJA 2013 Luscher’s Method 1 S(⌘), ⌘ = p cot = ⇡L ✓ pL 2⇡ ◆2 2 Efd p = 2µ⇤ B + ⌧ (p)[B BL ] - effective mass - topological factor (Bour, Hammer, Lee, Meißner 2013) Neutron-Deuteron Phase Shift 0 δ0(degree) -20 breakup -1 b=1/100 MeV -1 b=1/150 MeV -1 b=1/200 MeV STM -40 -60 Pine, Lee, Rupak, EPJA 2013 -80 0 50 p (MeV) 100 Now, what can I do with an adiabatic Hamiltonian? Primordial Deuterium p(n, )d Warm Up p(n, )d = +··· + Exact analytic continuum result 1 MC (✏) = 2 p + 2 1 (1/a + ip✏ )( ip✏ ) p , p✏ = p2 + iM ✏ , MC reduces to known M1 result Rupak, 2000 Rupak & Lee, PRL 2013 When ✏ ! 0 + Lattice p(n, )d Write h M(✏) = ✓ B |OEM | i i 2 p M E i✏ using retarded Green’s function ◆X x,y ⇤ B (y)hy| E 1 ip·x |xie ˆ s + i✏ H cluster Hamiltonian goes here LSZ reduction in QM Continuum Extrapolation 0 |M| 1.15 1.1 1.05 0.05 0.1 0.15 s0 = 1.012(18) s0 = 1.009(16) s0 = 1.005(07) p = 15.7 MeV p = 29.6 MeV p = 70.2 MeV 1 1.05 = ✏M/p2 1 φ 0.95 0.9 0.85 0.8 0 Fit : s0 + s1 s0 = 1.022(15) s0 = 1.031(02) s0 = 1.031(02) p = 15.7 MeV p = 29.6 MeV p = 70.2 MeV 0.1 0.05 δ 0.15 |M| (MeV−2 ) Capture Amplitude 10 10 20 50 70 100 -2 10 10 -4 10 continuum results -3 δ = 0.6 δ = 0.4 δ=0 δ = 0.6 δ = 0.4 δ=0 -5 = ✏M/p2 φ (deg) 80 60 δ = 0.6 δ = 0.4 δ=0 δ = 0.6 δ = 0.4 δ=0 40 20 0 10 20 50 70 100 p (MeV) Rupak & Lee, PRL 2013 Something still missing ... long range Coulomb ··· O ✓ ↵ p2 ◆ O ✓ ↵ ↵µ p2 p ◆ Proton-Proton Fusion + p + p ! d + e + ⌫e long and steady burning Proton fusion in continuum EFT = + +··· Coulomb ladder Peripheral scattering but how to calculate on the lattice? Consider elastic proton-proton scattering as a warmup Coulomb Subtracted Phase Shift 60 δsc (degree) 50 40 3% error in fits Analytic b=1/100 MeV−1 b=1/200 MeV−1 T =Tc + Tsc 30 20 10 0 0 Rupak, Ravi PLB 2014 5 10 15 p (MeV) 20 25 2⇡ e2i 1 Tc ⇡ µ 2ip 2⇡ e2i( + sc ) T ⇡ µ 2ip 30 Hard spherical wall boundary conditions, Borasoy et al. 2007 Carlson et al. 1984 1 Proton-proton fusion 3% fitting error propagates 3.2 3 2 8⇡C⌘2 |Tf i (p)| Gamow peak 6 keV Λ ⇤(p) = s 3.4 Analytic 2.8 b=1/100 MeV−1 2.6 b=1/200 MeV −1 2.4 2.2 2 0 200 ⇤EF T (0) ⇡2.51 400 600 E (keV) 800 1000 Kong, Ravndal 1999 Lattice fit : ⇤(0) ⇡2.49 ± 0.02 Rupak, Ravi PLB 2014 Dimer-dimer scattering Zero range interaction = + = + = + + Low momentum : p cot = + +... 1 1 + rdd p2 + · · · add 2 What are the ere parameters? -- Only scale: a↵ -- Universal numbers: add /a↵ , rdd /a↵ Petrov, Salomon, Shlyapnikov 2005 add = 0.6a↵ add /a↵ ⇡ 0.656 + Rupak 2006 O(ϵ2) O(ϵ3) Rest of the ERE are unknown. Not even their sign! Luscher’s Method Again 1 S(⌘), ⌘ = p cot = ⇡L 2 Edd p = 2µ⇤ 2B + ⌧ (p)[2B B (MeV) Different a↵ ✓ pL 2⇡ ◆2 2BL ] L (2 fm) QMC(MeV) Exact(MeV) 5 5 -9.790(6) -9.784 5 6 -9.868 3.5 5 -9.857(6) 9 -6.701(9) 3.5 6 -6.846(12) -6.848 3 5 -5.630(9) -5.634 3 6 -5.824(12) -5.827 -6.693 Dimer-Dimer phase shift 0.0 Universal behavior, positive effective range -0.5 aff p cot d -1.0 ÊÏ ‡ ʇ Ï -1.5 ‡Ï Ê Ï‡ Ê ‡ Ï ‡ Ê Ï -2.0 Preliminary Elhatisari, Katterjohn, Lee, Rupak -2.5 -3.0 0.0 0.5 1.0 Haff pL2 1.5 2.0 Ê Dimer-Dimer phase shift a0 = 0.564±0.028 r0 = 4.288±1.062 0 −0.5 −1 p/κ cot(δDD) −1.5 −2 −2.5 Preliminary Elhatisari, Katterjohn, Lee, Rupak 0 0.1 0.2 0.3 κ.alatt. 0.4 0.5 0.6 0.7 0.8 0 1 2 3 4 5 6 7 8 p2/κ2 p = 2µB Conclusions • Adiabatic Projection Method to derive effective two-body Hamiltonian • Retarded Green’s function for problems without long-range Coulomb • Spherical wall method with adiabatic Hamiltonian when long range Coulomb important • Dimer-dimer scattering Thank you
© Copyright 2024