14 - hyperelastic materials me338 - syllabus holzapfel nonlinear solid mechanics [2000], chapter 6, pages 205-305 14 - hyperelastic materials 1 isotropic hyperelastic materials 14 - hyperelastic materials 2 inflation of a spherical rubber balloon cauchy stress invariants in terms of principal stretches principal cauchy stresses http://www.youtube.com/watch?v=yURomiwg9PE http://www.youtube.com/watch?v=zoFMUMWVHD0 14 - hyperelastic materials 3 14 - hyperelastic materials 4 inflation of a spherical rubber balloon inflation of a spherical rubber balloon % cauchy stress vs stretch plot % loop over all stretches lambda from 1.0 to 10.0 for i=1:901 lam(i) = 1.0+(i-1)/100; sig_og(i) = m1_og * (lam(i)^a1_og-lam(i)^(-2*a1_og)) ... + m2_og * (lam(i)^a2_og-lam(i)^(-2*a2_og)) ... + m3_og * (lam(i)^a3_og-lam(i)^(-2*a3_og)); sig_mr(i) = m1_mr * (lam(i)^a1_mr-lam(i)^(-2*a1_mr)) ... + m2_mr * (lam(i)^a2_mr-lam(i)^(-2*a2_mr)); sig_nh(i) = m1_nh * (lam(i)^a1_nh-lam(i)^(-2*a1_nh)); sig_vg(i) = m1_vg * (lam(i)^a1_vg-lam(i)^(-2*a1_vg)); end mooney rivlin ogden neo hooke varga plot(lam,sig_og/10^6,'-k','LineWidth',2.0) plot(lam,sig_mr/10^6,'-k','LineWidth',2.0) plot(lam,sig_nh/10^6,'-k','LineWidth',2.0) plot(lam,sig_vg/10^6,'-k','LineWidth',2.0) 14 - hyperelastic materials inflation of a spherical rubber balloon mooney rivlin ogden 14 - hyperelastic materials 5 6 inflation of a spherical rubber balloon % pressure vs stretch plot neo hooke % loop over all stretches lambda from 1.0 to 10.0 for i=1:901 lam(i) = 1.0+(i-1)/100; p_og(i) = 2*H/R *(m1_og * (lam(i)^(a1_og-3)-lam(i)^(-2*a1_og-3)) ... + m2_og * (lam(i)^(a2_og-3)-lam(i)^(-2*a2_og-3)) ... + m3_og * (lam(i)^(a3_og-3)-lam(i)^(-2*a3_og-3))); p_mr(i) = 2*H/R *(m1_mr * (lam(i)^(a1_mr-3)-lam(i)^(-2*a1_mr-3)) ... + m2_mr * (lam(i)^(a2_mr-3)-lam(i)^(-2*a2_mr-3))); p_nh(i) = 2*H/R *(m1_nh * (lam(i)^(a1_nh-3)-lam(i)^(-2*a1_nh-3))); p_vg(i) = 2*H/R *(m1_vg * (lam(i)^(a1_vg-3)-lam(i)^(-2*a1_vg-3))); end varga plot(lam,p_og/10^2,'-k','LineWidth',2.0) plot(lam,p_mr/10^2,'-k','LineWidth',2.0) plot(lam,p_nh/10^2,'-k','LineWidth',2.0) plot(lam,p_vg/10^2,'-k','LineWidth',2.0) 14 - hyperelastic materials 7 14 - hyperelastic materials 8 inflation of a spherical rubber balloon inflation of a spherical rubber balloon mooney rivlin ogden mooney rivlin ogden neo hooke varga neo hooke varga 14 - hyperelastic materials 14 - hyperelastic materials 9 10 kinematic controversy mitral valve leaflet • ex vivo strains ~35% (left heart simulator) • in vivo strains ~12% (sonomicrometry/videofluoroscopy) ex vivo strain vs time 30% in vivo strain vs time 12% 20% 8% 10% 4% 0% 0% jimenez et al. [2007] rausch et al. [2011] why are strains in vivo 3x smaller than ex vivo? 14 - hyperelastic materials 11 12 14 - hyperelastic materials equilibrium controversy constitutive controversy • ex vivo failure stress ~900 kPa (biaxial testing) • in vivo stress ~3,000 kPa (videofluoroscopy/fe analysis) • ex vivo stiffness Ecirc ≈40kPa/4MPa and Erad ≈10kPa/1MPa • in vivo stiffeness Ecirc ≈40MPa and Erad ≈10MPa [kPa] ex vivo stress vs strain 800 600 radial circ rad [kPa] 3200 in vivo stress vs strain [kPa] ex vivo stress vs strain 800 2400 circ circ rad 600 rad [kPa] 3200 2400 circ 400 1600 400 1600 200 1800 200 1800 0 0 grande allen et al. [2005] 0 sacks et al. [2000], grande allen et al. [2005] krishnamurthy et al. [2009] why are stresses in vivo 3x larger than ex vivo? 13 14 - hyperelastic materials in vivo stress vs strain rad 0 krishnamurthy et al. [2009] why is stiffness in vivo 1000x larger than ex vivo? 14 14 - hyperelastic materials mitral valve leaflet hemodynamics - pressure average left ventricular pressure [mmHg] 120 100 80 60 40 20 0 ED EIVC ES EIVR normalized cardiac cycle figure. left ventricular pressure averaged over 57 animals. the simulation is performed at eight discrete time points during isovolumetric relaxation. the arrow indicates the direction of the simulation going backward in time from end isovolumetric relaxation to end systole. 14 - hyperelastic materials 15 14 - hyperelastic materials 16 transversely isotropic incompressible transversely isotropic incompressible incompressible material volumetric part isochoric part transversely isotropic material fiber orientation structural tensor 14 - hyperelastic materials 17 transversely isotropic incompressible volumetric part with 14 - hyperelastic materials 18 example 01 - neo hooke model isochoric part with and 14 - hyperelastic materials 19 14 - hyperelastic materials 20 example 02 - may newman model example 03 - holzapfel model with with 14 - hyperelastic materials 21 transversely isotropic incompressible 14 - hyperelastic materials 22 uniaxial stretching of anisotropic sheet function [] = UniAxialTest() lambda1 = [1:0.001:2.0]; lambda2 = lambda1; ! neo hooke - isotropic c0 ! may newman - anisotropic, coupled c0, c1, c2 ! holzapfel - anisotropic, decoupled c0, c1, c2 may newman, yin [1998], holzapfel, gasser, ogden [2000] 23 methods %%% material parameters %%%%%%%%%%% % neo hooke model c0_neo = 63700000; % may-newman model c0_may = 8958355943.52; c1_may = 0.89577484; c2_may = 1.79619884; % holzapfel model c0_hlz = 18364377.50; c1_hlz = 2499419166.42; c2_hlz = 97.44; % experiment c0_exp = 52.0; c1_exp = 4.63; c2_exp = 22.6; 14 - hyperelastic materials 24 uniaxial stretching of anisotropic sheet uniaxial stretching of anisotropic sheet %% derivatives of free energy wrt invariants %%%%%%%% %% stress-stretch in fiber direction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I1 = lambda1.^2 + 2./lambda1; I4 = lambda1.^2; function [Ppsi1] = psi1_neo(c0,I1,I4) psi1 = c0; end function [psi1] = psi1_may(c0,c1,c2,I1,I4) psi1 = c0.*exp(c1.*(I1-3).^2+c2.*(I4-1).^2)*2*c1.*(I1-3); end % neo-hooke model neo_sigma_11 = 2 .* psi1_neo(c0_neo,I1,I4) * (lambda1.^2-1./lambda1); % may-newman model may_sigma_11 = 2 .*psi1_may(c0_may,c1_may,c2_may,I1,I4) .* (lambda1.^2-1./lambda1) + 2 .* psi4_may(c0_may,c1_may,c2_may,I1,I4) .* lambda1.^2; % holzapfel model hlz_sigma_11 = 2 .* psi1_hlz(c0_hlz,c1_hlz,c2_hlz,I1,I4) .* (lambda1.^2-1./lambda1) ... + 2 .* psi4_hlz(c0_hlz,c1_hlz,c2_hlz,I1,I4) .* lambda1.^2; % experiment exp_sigma_11 = 2 .* psi1_may(c0_exp,c1_exp,c2_exp,I1,I4) .* (lambda1.^2-1./lambda1) + 2 .* psi4_may(c0_exp,c1_exp,c2_exp,I1,I4) .* lambda1.^2; function [psi4] = psi4_may(c0,c1,c2,I1,I4) psi4 = c0.*exp(c1.*(I1-3).^2+c2.*(I4-1).^2).*2.*c2.*(I4-1); end function [psi1] = psi1_hlz(c0,c1,c2,I1,I4) psi1 = c0; end plot(lambda1, neo_sigma_11/10^9,'r-','LineWidth',2.0) plot(lambda1, may_sigma_11/10^9,'b-','LineWidth',2.0) plot(lambda1, hlz_sigma_11/10^9,'g-','LineWidth',2.0) plot(lambda1, exp_sigma_11/10^9,'k-','LineWidth',2.0) function [psi4] = psi4_hlz(c0,c1,c2,I1,I4) psi4 = c1.*(I4-1).* exp(c2.*(I4-1).^2); end 14 - hyperelastic materials 14 - hyperelastic materials 25 uniaxial stretching of anisotropic sheet 26 uniaxial stretching of anisotropic sheet %% stress-stretch relation in cross-fiber direction %%%%%%%%%%%%%%%%%%%%%% I1 = lambda2.^2 + 2./lambda2; I4 = 1./lambda2; % neo-hooke model neo_sigma_22 = 2 .* psi1_neo(c0_neo,I1,I4) .* (lambda2.^2-1./lambda2); % may-newman model may_sigma_22=2 .*psi1_may(c0_may,c1_may,c2_may,I1,I4) .* (lambda2.^2-1./lambda2); % holzapfel model hlz_sigma_22 = 2 .* psi1_hlz(c0_hlz,c1_hlz,c2_hlz,I1,I4) .* (lambda2.^2-1./lambda2); % experiment exp_sigma_22 = 2 .* psi1_may(c0_exp,c1_exp,c2_exp,I1,I4) .* (lambda2.^2-1./lambda2); plot(lambda1, hlz_sigma_22/10^9,'g-','LineWidth',2.0) plot(lambda1, may_sigma_22/10^9,'b-','LineWidth',2.0) plot(lambda1, neo_sigma_22/10^9,'r-','LineWidth',2.0) plot(lambda1, exp_sigma_22/10^9,'k-','LineWidth',2.0) 14 - hyperelastic materials 27 14 - hyperelastic materials 28 uniaxial stretching of anisotropic sheet parameter identification initialize current parameter set update finite element analysis LVP animal experiment objective function convergence? yes genetic algorithm no final parameter set rausch, famaey, shultz, bothe, miller, kuhl [2013] 14 - hyperelastic materials 29 14 - hyperelastic materials 30 sensitivity - chord position & number sensitivity - discretization 30 elements 120 elements 480 elements 1920 elements 7680 elements close to annulus and commissures = 77.5 MPa belly deflection vs no of elems chordae close to free edge = 63.7 MPa close to annulus and midline = 85.0 MPa single cord close to free edge = 65.4 MPa 1920 convergence upon mesh refinement 14 - hyperelastic materials insensitive to chordae position 31 14 - hyperelastic materials 32 sensitivity - chordae stiffness sensitivity - leaflet thickness leaflet stiffness leaflet stiffness [MPa] vs chord stiffness [MPa] [MPa] vs leaflet thickness[mm] 1.0 20.0 moderately sensitive to chordae stiffness 14 - hyperelastic materials sensitive to leaflet thickness 33 optimized thickness [mm] optimized bending stiffness[Nmm2] nodal error -1.0mm c0 = 119,020.7kPa +1.0mm c1 = 152.4 c2 = 185.5 why is stiffness in vivo 1000x larger than ex vivo? leaflet thickness is physiologically optimized 14 - hyperelastic materials 34 coupled anisotropic model sensitivity - leaflet thickness constant thickness deformation error [mm] 14 - hyperelastic materials may newman, yin [1998], rausch, famaey, shultz, bothe, miller, kuhl [2013] 35 14 - hyperelastic materials 36 decoupled anisotropic model what’s the influence of prestrain? in vivo min LVP in vivo max LVP nodal error -1.0mm c0 = 18,364.4kPa ex vivo +1.0mm c1 = 2,499,419.2kPa c2 = 97.4 rad circ why is stiffness in vivo 100x larger than ex vivo? amini, eckert, koomalsingh, mcgarvey, minakawa, gorman, gorman, sacks [2012] holzapfel, gasser, ogden [2000], rausch, famaey, shultz, bothe, miller, kuhl [2013] 14 - hyperelastic materials 37 what’s the influence of prestrain? in vivo min LVP λ = 1.21 14 - hyperelastic materials 38 what’s the influence of prestrain? in vivo max LVP ex vivo rad circ λp = 1.32 λe = 1.60 amini, eckert, koomalsingh, mcgarvey, minakawa, gorman, gorman, sacks [2012] 14 - hyperelastic materials rausch, famaey, shultz, bothe, miller, kuhl [2013] 39 14 - hyperelastic materials 40 what’s the influence of prestrain? stiffening effect of prestrain begley & macking [2004], zamir & taber [2004], rausch & kuhl [2013] begley & macking [2004], zamir & taber [2004], rausch & kuhl [2013] 14 - hyperelastic materials 41 what’s the influence of prestrain? 14 - hyperelastic materials 42 parameter identification w/prestrain 70% 100% may newman, yin [1998], rausch, kuhl [2013] 14 - hyperelastic materials 43 14 - hyperelastic materials 44 stress vs elastic stretch stress vs total stretch rausch & kuhl [2013] rausch & kuhl [2013] 14 - hyperelastic materials 45 parameter identification w/prestrain 14 - hyperelastic materials 46 what’s the effect of prestrain? • stiffness is significantly larger in vivo than ex vivo • concept of prestrain may explain this controversy • prestrain is conceptually simpler than residual stress • ex vivo testing alone tells us little about in vivo behavior • likely true for thin biological membranes in general in vivo stiffness = ex vivo stiffness may newman, yin [1998], rausch, kuhl [2013] 14 - hyperelastic materials 47 14 - hyperelastic materials 48
© Copyright 2024