Malaria, river-blindness and plague: three case studies in spatial modelling of tropical diseases Emanuele Giorgi and Peter J. Diggle Lancaster Medical School, Lancaster University, Lancaster, UK LSHTM, 24 April 2015 Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 1 / 21 Three issues of disease mapping in low-resource settings 1 Combining data from multiple surveys of different quality: e.g. randomised and non-randomised surveys. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 1 / 21 Three issues of disease mapping in low-resource settings 1 Combining data from multiple surveys of different quality: e.g. randomised and non-randomised surveys. 2 Spatially structured zero-inflation: chance finding or disease-free community? Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 1 / 21 Three issues of disease mapping in low-resource settings 1 Combining data from multiple surveys of different quality: e.g. randomised and non-randomised surveys. 2 Spatially structured zero-inflation: chance finding or disease-free community? 3 Analysis of spatio-temporal data at multiple spatial-scales: how to integrate district-level disease case reports with high resolution environmental data? Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 1 / 21 Overview 1 Malaria: combining data from a community and a (biased) school-based surveys in Nyanza Province, Kenya. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 2 / 21 Overview 1 Malaria: combining data from a community and a (biased) school-based surveys in Nyanza Province, Kenya. 2 River-blindness: geostatistical modelling of spatially-structured zero inflation in prevalence data from Mozambique, Malawi and Tanzania. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 2 / 21 Overview 1 Malaria: combining data from a community and a (biased) school-based surveys in Nyanza Province, Kenya. 2 River-blindness: geostatistical modelling of spatially-structured zero inflation in prevalence data from Mozambique, Malawi and Tanzania. 3 Plague: spatio-temporal analysis of monthly plague incidence from 2000 to 2007 in Madagascar. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 2 / 21 -0.45 -0.50 -0.60 -0.55 Latitude -0.40 Malaria mapping in Nyanza Province 34.70 34.75 34.80 34.85 34.90 34.95 Longitude Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 3 / 21 35.00 -0.45 -0.50 -0.60 -0.55 Latitude -0.40 Malaria mapping in Nyanza Province 34.70 34.75 34.80 34.85 34.90 34.95 Longitude Statistical issues • Different unmeasured risk factors for malaria. • Joint model or gold-standard data only? Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 3 / 21 35.00 Accounting for residual spatial bias • rd (x) = ‘‘odds for the disease’’ • rs (x) = ‘‘odds within the survey’’ • rc (x) = ‘‘relative odds between participants and non-participants to the survey’’ Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 4 / 21 Accounting for residual spatial bias • rd (x) = ‘‘odds for the disease’’ • rs (x) = ‘‘odds within the survey’’ • rc (x) = ‘‘relative odds between participants and non-participants to the survey’’ rs (x) = rd (x) × rc (x) Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 4 / 21 Accounting for residual spatial bias • rd (x) = ‘‘odds for the disease’’ • rs (x) = ‘‘odds within the survey’’ • rc (x) = ‘‘relative odds between participants and non-participants to the survey’’ rs (x) = rd (x) × rc (x) ⇐⇒ log{rs (x)} = S(x) + B(x) Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 4 / 21 (1) Accounting for residual spatial bias • rd (x) = ‘‘odds for the disease’’ • rs (x) = ‘‘odds within the survey’’ • rc (x) = ‘‘relative odds between participants and non-participants to the survey’’ rs (x) = rd (x) × rc (x) ⇐⇒ log{rs (x)} = S(x) + B(x) (1) • Yijk |S(xij ), B(xij ) ∼ Bernoulli(pijk ) (i=‘‘survey", j =‘‘household", k =‘‘’individual’’). Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 4 / 21 Accounting for residual spatial bias • rd (x) = ‘‘odds for the disease’’ • rs (x) = ‘‘odds within the survey’’ • rc (x) = ‘‘relative odds between participants and non-participants to the survey’’ rs (x) = rd (x) × rc (x) ⇐⇒ log{rs (x)} = S(x) + B(x) (1) • Yijk |S(xij ), B(xij ) ∼ Bernoulli(pijk ) (i=‘‘survey", j =‘‘household", k =‘‘’individual’’). • log{pijk /(1 + pijk )} = d> ijk β + S(xij ) + B(xij ); 2 B(x) = 0, ∀x ∈ R if i is ‘‘community’’. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 4 / 21 Results (1) Term Intercept Age Rachuonyo District Socio-Economic-Status School survey Age (bias) Emanuele Giorgi and Peter J. Diggle Estimate -1.412 -0.141 2.006 -0.121 -0.761 0.094 95% CI (-2.303, -0.521) (-0.174, -0.109) (1.228, 2.785) (-0.169, -0.072) (-1.354, -0.167) (0.046, 0.142) Spatial modelling of tropical diseases 5 / 21 Results (2) Mapping of (a) rc (x) and (b) 1 − P (0.9 < rc (x) < 1.1|y). -0.45 0.8 0.7 0.6 0.5 0.4 0.3 0.2 -0.55 Latitude (a) 34.70 34.80 34.90 35.00 Longitude -0.45 1.00 0.98 0.96 0.94 0.92 0.90 0.88 -0.55 Latitude (b) 34.70 34.80 34.90 35.00 Longitude Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 6 / 21 Results (3) Gain/loss in the accuracy for the estimates of S(x). (b) Latitude -0.55 -0.50 -0.45 -0.40 1.0 0.8 0.6 -0.65 -0.60 0.4 Std. errors (community + school) -0.35 1.2 (a) 0.4 0.6 0.8 Std. errors (community) Emanuele Giorgi and Peter J. Diggle 1.0 34.70 34.75 34.80 34.85 34.90 34.95 35.00 Longitude Spatial modelling of tropical diseases 7 / 21 River blindness Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 8 / 21 Rapid epidemiological mapping of onchocerciasis Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 9 / 21 Prevalence estimates in the 20 APOC countries Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 10 / 21 Prevalence estimates in the 20 APOC countries Statistical issue 1 3, 320 villages with no case and 11, 154 villages with at least one case. 2 Accounting for zero-inflation: how to identify disease-free areas? Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 10 / 21 Extending the standard geostatistical model • Standard model: Y |S(x) ∼ Bin(·; n, p(x)) where log{p(x)/(1 − p(x))} = µ + S(x). Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 11 / 21 Extending the standard geostatistical model • Standard model: Y |S(x) ∼ Bin(·; n, p(x)) where log{p(x)/(1 − p(x))} = µ + S(x). • Allowing for zero-inflation: ( π(x) + (1 − π(x))Bin(0; n, p(x)) if y = 0 P (Y = y|S1 (x), S2 (x), D(x)) = (1 − π(x))Bin(y; n, p(x)) if y > 0 Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 11 / 21 Extending the standard geostatistical model • Standard model: Y |S(x) ∼ Bin(·; n, p(x)) where log{p(x)/(1 − p(x))} = µ + S(x). • Allowing for zero-inflation: ( π(x) + (1 − π(x))Bin(0; n, p(x)) if y = 0 P (Y = y|S1 (x), S2 (x), D(x)) = (1 − π(x))Bin(y; n, p(x)) if y > 0 where logit(π(x)) = µ1 + S1 (x) + D(x), logit(p(x)) = µ2 + S2 (x) + D(x). Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 11 / 21 Extending the standard geostatistical model • Standard model: Y |S(x) ∼ Bin(·; n, p(x)) where log{p(x)/(1 − p(x))} = µ + S(x). • Allowing for zero-inflation: ( π(x) + (1 − π(x))Bin(0; n, p(x)) if y = 0 P (Y = y|S1 (x), S2 (x), D(x)) = (1 − π(x))Bin(y; n, p(x)) if y > 0 where logit(π(x)) = µ1 + S1 (x) + D(x), logit(p(x)) = µ2 + S2 (x) + D(x). • In the next example D(x) = 0, ∀x. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 11 / 21 Mapping in Mozambique - Malawi - Tanzania (1) -5 Difference -5 Standard GEO 0.8 1.0 -10 -10 1.0 0.8 0.6 0.2 -10 -5 Geo-ZIB 0.1 0.6 0.4 30 35 40 Emanuele Giorgi and Peter J. Diggle -0.1 -0.2 -25 0.0 -20 0.2 -25 -25 0.0 -20 -20 0.2 -15 -15 -15 0.0 0.4 30 35 40 Spatial modelling of tropical diseases 30 35 12 / 21 40 Mapping in Mozambique - Malawi - Tanzania (2) -5 Mapping of π(x). -10 1.0 0.8 -15 0.6 0.4 -20 0.2 -25 0.0 25 Emanuele Giorgi and Peter J. Diggle 30 35 40 45 Spatial modelling of tropical diseases 13 / 21 Plague Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 14 / 21 0.7 0.5 0.3 0 0.1 Incidence per 100,000 0.9 Plague in Madagascar 1960 1963 1966 1969 1972 1975 1978 1981 Emanuele Giorgi and Peter J. Diggle 1984 1987 1990 1993 1996 1999 2002 2005 2008 Spatial modelling of tropical diseases 15 / 21 0.7 0.5 0.3 0 0.1 Incidence per 100,000 0.9 Plague in Madagascar 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 Statistical issue 1 Ecological bias. 2 How to integrate spatially continuous data with district-level case reports? Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 15 / 21 Modelling framework • Ni,t = ‘‘number of cases in the i-th district at time t’’ Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 16 / 21 Modelling framework • Ni,t = ‘‘number of cases in the i-th district at time t’’ • λ(x, t) = ‘‘intensity of an inhomogeneous Poisson process at location x and time t’’ Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 16 / 21 Modelling framework • Ni,t = ‘‘number of cases in the i-th district at time t’’ • λ(x, t) = ‘‘intensity of an inhomogeneous Poisson process at location x and time t’’ • Ni,t ∼ Poisson R Emanuele Giorgi and Peter J. Diggle t+1 t R Ai λ(u, v) du dv . Spatial modelling of tropical diseases 16 / 21 Modelling framework • Ni,t = ‘‘number of cases in the i-th district at time t’’ • λ(x, t) = ‘‘intensity of an inhomogeneous Poisson process at location x and time t’’ • Ni,t ∼ Poisson R t+1 t R λ(u, v) du dv . R t+1 R Pni,t • t λ(u, v) du dv ≈ ∆ j=1 λ(xj , t). Ai Emanuele Giorgi and Peter J. Diggle Ai Spatial modelling of tropical diseases 16 / 21 Modelling framework • Ni,t = ‘‘number of cases in the i-th district at time t’’ • λ(x, t) = ‘‘intensity of an inhomogeneous Poisson process at location x and time t’’ • Ni,t ∼ Poisson R t+1 t R λ(u, v) du dv . R t+1 R Pni,t • t λ(u, v) du dv ≈ ∆ j=1 λ(xj , t). Ai Ai • Xi,t = {Xj,t ∈ Ai }|Ni,t = ni,t has multinomial distribution with probabilities λ(xk , t) pk = Pni,t , for k = 1, . . . , ni,t . j=1 λ(xj , t) Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 16 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, d(x, t)> β = β1 + β2 temp(x, t) + β3 rain(x, t) + Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, d(x, t)> β = β1 + β2 temp(x, t) + β3 rain(x, t) + β4 I(elev(x) > 800m) + β5 elev(x) + β6 elev(x) × I(elev(x) > 800m) + Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, d(x, t)> β = β1 + β2 temp(x, t) + β3 rain(x, t) + β4 I(elev(x) > 800m) + β5 elev(x) + β6 elev(x) × I(elev(x) > 800m) + β7 log{pop(x)} + Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, d(x, t)> β = β1 + β2 temp(x, t) + β3 rain(x, t) + β4 I(elev(x) > 800m) + β5 elev(x) + β6 elev(x) × I(elev(x) > 800m) + β7 log{pop(x)} + [β8 + β9 temp(x, t) + β10 rain(x, t)] sin(2πt/12) + [β11 + β12 temp(x, t) + β13 rain(x, t)] cos(2πt/12) Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, d(x, t)> β = β1 + β2 temp(x, t) + β3 rain(x, t) + β4 I(elev(x) > 800m) + β5 elev(x) + β6 elev(x) × I(elev(x) > 800m) + β7 log{pop(x)} + [β8 + β9 temp(x, t) + β10 rain(x, t)] sin(2πt/12) + [β11 + β12 temp(x, t) + β13 rain(x, t)] cos(2πt/12) S(x) = Si , if x ∈ districti Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Intensity of the point process • m(x, t) = ‘‘number of susceptibles at location x and time t’’ • λ(x, t) = m(x, t) exp{d(x, t)> β + S(x) + V (t)}, d(x, t)> β = β1 + β2 temp(x, t) + β3 rain(x, t) + β4 I(elev(x) > 800m) + β5 elev(x) + β6 elev(x) × I(elev(x) > 800m) + β7 log{pop(x)} + [β8 + β9 temp(x, t) + β10 rain(x, t)] sin(2πt/12) + [β11 + β12 temp(x, t) + β13 rain(x, t)] cos(2πt/12) S(x) = Si , if x ∈ districti V (t) | V (t − 1), . . . , V (0) = V (t) | V (t − 1) Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 17 / 21 Results (1) Term β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 Emanuele Giorgi and Peter J. Diggle Estimate -41.301 0.055 0.028 22.241 0.027 -0.024 0.069 0.735 -0.293 0.025 5.017 0.040 -0.026 95% CI (-54.246, -30.104) (-0.008, 0.125) (-0.009, 0.061) (10.566, 35.322) (0.011, 0.043) (-0.041, -0.008) (0.014, 0.140) (-0.103, 1.444) (-0.314, -0.269) (-0.003, 0.053) (4.513, 5.498) (0.007, 0.078) (-0.063, 0.013) Spatial modelling of tropical diseases 18 / 21 Results (2) Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 19 / 21 Results (3) Spatial residuals under -1 -1 - -0.05 -0.05 - 0.05 0.05 - 1 1-2 over 2 Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 20 / 21 Discussion Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 21 / 21 Discussion • How to account for spatio-temporally structured bias? Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 21 / 21 Discussion • How to account for spatio-temporally structured bias? • Alternative modelling approaches to zero-inflation. 1 2 Admitting discontinuities in prevalence. Constraining prevalence to smoothly approach zero. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 21 / 21 Discussion • How to account for spatio-temporally structured bias? • Alternative modelling approaches to zero-inflation. 1 2 Admitting discontinuities in prevalence. Constraining prevalence to smoothly approach zero. • Comparison of the mechanistic approach with empirical models. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 21 / 21 Discussion • How to account for spatio-temporally structured bias? • Alternative modelling approaches to zero-inflation. 1 2 Admitting discontinuities in prevalence. Constraining prevalence to smoothly approach zero. • Comparison of the mechanistic approach with empirical models. • Acknowledgements: Gillian Stresman (LSHTM), Jennifer Stevenson (LSHTM), Hans Remme (Ornex), Cyril Caminade (Liverpool), Matthew Baylis (Liverpool). Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 21 / 21 Discussion • How to account for spatio-temporally structured bias? • Alternative modelling approaches to zero-inflation. 1 2 Admitting discontinuities in prevalence. Constraining prevalence to smoothly approach zero. • Comparison of the mechanistic approach with empirical models. • Acknowledgements: Gillian Stresman (LSHTM), Jennifer Stevenson (LSHTM), Hans Remme (Ornex), Cyril Caminade (Liverpool), Matthew Baylis (Liverpool). Thanks for your attention. Emanuele Giorgi and Peter J. Diggle Spatial modelling of tropical diseases 21 / 21
© Copyright 2024