op ed i Evolution of Plate Design and Function rt -Indications for Locked Plating- ya O Uğur GÖNÇ, MD Ç an ka Çankaya Hospital Dept. Orthopedics and Traumatology Ankara, TURKEY AO Trauma Advanced Course Krakow, 2014 ed i Learning Outcomes op • Spectrum of fixation methods using different plates O – Biomechanical considerations rt • Evolution of plates ya • Mechanics of locking head screws ka • Indications for locked plating Ç an • Correct application of locked plating Ç an ka ya O rt op ed i Historical implants ed i Original AO Principles (1958) op 1. Anatomical direct reduction O ya – Stable internal fixation rt 2. Rigid fixation with fracture compression ka 3. Preservation of blood supply and soft tissues Ç an 4. Early active pain-free mobilization ed i Lag screw Ç an ka ya O rt op The lag screw is the basic tool used to create interfragmentary compression Round-hole plate (1958) Ç an ka ya O rt op ed i Axial compression could only be obtained using the external compression device Dynamic compression plate (DCP) Ç an ka ya O rt op ed i “Still—don’t forget” Dynamic compression plate External tension device ed i Plate Function Ç an ka ya • Tension band O • Buttress – antiglade rt • Protection – neutralization op • Compression absolute stability ed Absolute stability op Direct healing Transverse or oblique 2-part fractures ka ya O rt Screws compress plate to bone Ç an • • • • i Compression plate Ç an ka ya O rt op ed i Compression plate ed i Neutralization Plate Ç an ka ya O rt • rotational and axial forces op • Protects interfragmantery lag screw(s) op • Displacement in one direction ya O rt • Resists axial loading (antigliding) ka • Metaphyseal fractures (“B” type partial articular) Ç an ed i Buttress Plate Ç an ya ka op rt O ed i op ed i Tension Band Plating O • Plate on tension (convex) side rt • Eccenterically loaded bone Ç an ka ya • Compression at concave side ka ya Lag screw through plate O rt op ed i Wedge Fractures Ç an More soft tissue stripping Lag screw and neutralization ed i Comminuted Fractures ? op • Require substantial soft tissue disruption Ç an ka ya O rt • Bone grafting on contralateral side ed i Problems with Absolute Stability • Delayed union op • Too extensive surgery • Periosteal stripping • Implant failure • Nonunion O rt • Soft tissue damage Ç an ka ya • Too many implants • Wound problems and Infection ed i Biological Solutions Ç an ka ya O • New surgical techniques rt op • New plate designs ed i Traditional Compression Plate Ç an ka ya O rt op Plate pressure - necrosis Ç an ka ya 1991 O rt op ed i Limited contact DCP (LC-DCP) ed i Plate Design op • Gradual evolution O rt • Minimize detrimental effects on bone Ç an ka ya DCP LC-DCP PC-Fix ed i Point-contact fixator (PC-Fix) Ç an ka ya O rt op An evolutionary breakthrough ed i New Surgical Techniques op • Relative stability concept rt • Bridge plating Ç an ka ya – İndirect reduction – Percutaneous plating O • Minimally invasive surgery Ç an ka ya O rt op ed i Bridging Techniques op Internal extramedullary splinting ed i Bridging Plating O rt • Long plate Ç an ka ya • Less screw op • Functional reduction to restore O rt – Alignment – Length – Rotation Ç an ka ya • No anatomical reduction of the fragments ed i Indirect Reduction Ç an ya ka op rt O ed i MIPO Ç an ya ka op rt O ed i Distal Tibia Ç an ya ka op rt O ed i Distal Tibia Ç an ya ka op rt O ed i Distal Tibia Ç an ya ka op rt O ed i Distal Tibia Ç an ya ka op rt O ed i rt op ed i Spectrum of stability • Some motion • Relative stability Ç an Compression Neutralization Buttress Tension band ka ya O • No motion • Absolute stability Bridge • Excessive motion • No stability ed i AO Principles now ! ya 2. Adequate fixation articular, simple fractures, forearm comminuted meta-diaphyseal fractures rt Anatomical Functional O • • op 1. Reduction ka – Absolute or relative stability depending on the fracture pattern Ç an 3. Preservation of blood supply and soft tissues 4. Early active pain-free mobilization ed i LISS “Less Invasive Stabilization System” op • Designed for MIPO Ç an ka ya O rt • Internal fixator LISS - DF LISS - PLT ed i LISS Ç an ka ya rt O • Self-drilling, self-tapping op • Locking head screw Ç an ya ka op rt O ed i LISS - DF Ç an ya ka op rt O ed i LISS - DF Ç an ya ka op rt O ed i LISS - DF Ç an ya ka op rt O ed i ed i Locking Compression Plate (LCP) op Combination hole Ç an ka ya O rt dynamic compression unit conical and threaded unit rt op Locking head screws (LHS) Self-tapping LHS Self-drilling, self-tapping LHS Ç an ka ya O Conventional screws Cortex screw (with or without shaft) Cancellous bone screw (with or without shaft) ed i Different types of screws Difference of Function Locked plate Ç an ka ya O rt op ed i Compression plate Force Transmission by Bone to Plate Friction Force Transmission through Locking Head Screw Ç an ka ya O rt op ed i Non-contact Plate Locked plate does not compress underlying bone !! op • No compression of periosteum ed i Advantages of LHS rt – Protects blood supply ya O • Angular stability • Better anchorage in osteoporotic bone Ç an ka – Less primary destruction of thread in the bone – Higher resistance against bending forces ed i Conventional Screws in Osteoporosis Ç an ka ya O rt op Failure at screwplate interface sequential failure of screws Small area of bone loss ed i LHS in Osteoporosis Ç an ka ya O rt op LHS and plate functions as one unit Larger area of resistance ya O rt op ed i LHS-Plate Unit Ç an ka Pull out force Ç an ka ya O rt op ed i LHS-Plate Unit Pull out strength ed i No Bony Contact op • Preserved periosteal Ç an ka ya O rt circulation ed i Primary Loss of Reduction op • No compression of the plate ya metaphyseal region O • No contouring necessary in rt to the bone Ç an ka • Advantageous in MIPO ed i Secondary Loss of Reduction op • Angular stability Ç an ka ya • Osteoporotic fractures O fragments rt • Short epi-metaphyseal ed i Application of LCP rt op • When ? ya ka Ç an • How ? O • Where ? • Anatomical region ed i When ? Periarticular / metaphyseal fx • Fracture pattern op – Not suitable for IM nail ka rt ya O • Bone quality Comminuted fx Ç an • Surgical technique • Special situations – Bridge plating relative stability Osteoporosis – Angular stability MIPO – No 10 loss of reduction Periprosthetic fx – Monocortical screw op Surgical technique Ç an ka ya O rt Implants ed i Do not mix things up! Biomechanical principles i LCP for Absolute Stability Ç an ka ya O rt op ed As a conventional plate, using conventional screws Good bone quality Ç an ed ka ya O rt op For poor bone quality i LCP for Absolute Stability LHS for protection in osteoporotic bone especially in upper extremity Ç an ya ka op rt O CS 1 CS 2 ed i ed i Neutralization op • Free lag screws – Absolute stability O rt • Neutralization with locked plate Ç an ka ya – Less periosteal compression – No plate contouring – Angular stability in poor bone ka ya O rt op Bridging plating ed i LCP for Relative Stability Ç an As an internal fixator, using locking head screws op rt O ya ka Proksimal humerus Humeral shaft Distal humerus Distal radius Proximal femur Distal femur Proximal tibia Distal tibia Hand Foot Ç an • • • • • • • • • • ed i Where ? ed i Anatomically Preshaped Plates O rt op Standard plates Ç an ka ya Special and anatomically preshaped plates ed i Proximal Humerus • Poor bone quality rt op – Angular stability – LHS in different directions Ç an ka ya O • MIPO Ç an ka ya O rt op ed i Proximal Humerus MIPO technique ed i Humeral Shaft • MIPO Ç an ka ya O rt op • Rotational stability ed i Distal Humerus op • Anatomically preshaped plates • Short distal fragments Ç an ka ya O rt – Angular stability ed i Distal Radius • Volar plating Ç an ka ya O rt op – Short segment – Dorsal comminution – Osteoporosis ed i Lower Extremity • Periarticular / metaphyseal fx O rt op – Short segment – Osteoporosis – Comminution Ç an • MIPO ka – Relative stability ya • Bridging plating Ç an ya ka op rt O ed i Ç an ya ka op rt O ed i MIPO ed i Intraarticular Involvement • Intraarticular component Ç an ka O ya – Bridging relative stability rt • Metaphyseal component op – Lag screw absolute stability op ed i Intraarticular Involvement rt Absolute O Relative Ç an ka ya Relative Absolute Ç an ka ya O rt op ed i Periprosthetic Fractures ed i Diaphyseal Fractures rt O • Multiple injured patients op When you cannot use IM nailing ya • Open physis Ç an ka • Narrow canal Ç an ya ka op rt O ed i Polytrauma Ç an ya ka op rt O ed i Pediatric Ç an ya ka op rt O ed i Narrow Canal ed i How ? ka rt O ya Plate length Screw positon Number of screws Screw length Ç an • • • • op Pre-operative planning Ç an ka ya O rt op ed i Plate Length Long lever arm ya O rt ed op Higher stress i Screw Position Ç an ka Maximum stress Ç an ka ya O rt op ed i Avoid short “middle” ed i Implant Choice • Plate length rt op – Comminuted 2 or 3 X fx length – Simple 8 or 10 X fx length O • 3 - 4 empty holes ya • Number of screws ka – Lower ex. 2 - 3 in each segment – Upper ex. 3 - 4 in each segment Ç an • Plate-screw density 0.40 • Anatomical plates in metaphysis Plate length Fx zone ed i Hybrid use of screws op • Intraarticular fractures rt – Absolute stability O • Reduction ka ya – Anatomically preshaped plates – Big butterly fragment • Articular orientation of fixed Ç an angled screw O rt op ed i Hybrid use of screws Ç an ka ya Lag before locked Ç an ka ya O rt op ed i Avoid monocortical screws i Working Length ka Ç an insufficient working length rt O ya good bone quality op ed sufficient working length osteoporotic bone ed i Malreduction op • Locked plates don’t help Ç an ka ya O • Careful indirect reduction rt reduction !! op • Plate name ≠ plate function ed i Take home messages rt • Any plate can be used in many ways O • Plate function is dependent upon: ya Design Ç an ka Method of application ed i Take home messages op • Evolution of plates: mechanics biology • Comminuted fractures rt Bridging plating biological fixation O • Locked plating Planning !! ka ya Osteoporosis; short metaphyseal segments MIPO Ç an Understanding the principles Good functional reduction Correct choice of implant and application
© Copyright 2025