Pr?:-quk;8 O p ~ n m(701 l 3) X3.7( )''F;3 71 42013 Brazilian Operabons Research Souely Pnnted verslon ISSN 0101-74381 Onllk veraon ISSN 1678-5'42 www w ~ c h brlpopc A kON-STANDAIW OPTIMAL COKTROL PROBLEM ARISING IN l$Y ECOKOklICS APPLIC:\rl'IOTI' Alan Zinobcr* and Suliadi Sufahani I2rxcir.d Mq 3; 3 1 1 1 :Acc-lytllrl July 1OZ201: ABSTRACT. A rcccrlt optimal mntrol problcm it1 the arc3 of economics has mathmatical proptrtics that do not la11 into thc standard optimal control problem formulation. [n our prohlcn~thc slate value at the titla1 time rhe sme, Y ( I - ) = =: is Cree i~ndunknown, and additionally the hgwngian intgrand in the f~tncrio~~ai 1s a p 1 w ~ 7 h consml . i ~ ~ firncl~minf lhc nnknt~wnvaluc j i1.1. 'I his Ir no1 a sundanl opl~maleoncrol pn~blcni anti cilnnot ht. solrul u\lng l'oniyagin's Minimum I'nnciplc with the standad h o & q ctmctiiiins at thc final tlnw. 111 the stanchrtl pnbhlcm r ficc final state j - t f ' ~yield\ a n ~ m x i i qhoundarj condititrn p(7 ) 0, when ptl) 1s rhc cosmtc. Rccausc the integrand is a function of y~T b , thc fkw ncccrvary condition IS that r1T) should bc equal to a certain iatgral that is a continuous liuilction of T I . We iniroducc a continuous approximation of rbe piecewise cunslanl i n t g n ~ i dhalction by using a hyperbolic rangen1 approach and ~ 4 v ijn e wdniple u s i q a C - ' dlooting dguriQm with Kwtunilrmion for sulvilig 1he'lic.u I'oint b u d ~ r y Value tbohlcm ( I'i'liVtJ). I'hc ni~n~nii\ing Tru. valr~cy( I'l is calculal~~l In :m outcr loop ~lcwlitmusing the (iulrlcn S L T ~or I ~ljr~mt I algurithm I:~)~npuratrvu 11o1dinc;lrprt~granmii~ig (hP) discrctc-timcrtsults arc r h ) pr~zmtrd Keywords: optimal ammol, non-standard opiimal cnntn~l,piixiwisc constant ilitcgrand, ~wonomics,u)m- parativc ~bonlit~car progm~btningrwults. Cdculus of Variatio~s(CoV) pnlvidcs thc ~lathcmalieallkcory to solve extrcmixing iuneriotlal problems f i r ~ l i i c ha given iiinctional has tl smtionary value eitlier nlinirnunl or maxin~um[131. Optimal control i s an ertensirln nf C:oV and it is a ma~hematicalr)ptirni~atianmcihod Tur deriving optimal control politics. Optinla1 control c l ~ n n c l thc s paths of thc control variables to optimiirc thc ~ 1 s functitmal t whilst satisfying (in this paper) ordinary diKe~cntialequations. I:cnnornics is a sc~urccof intcnsting applications o f Ihc lhcory of C'oV :md clplimal control 1'71. A fnsclassic:d manlpIt:b tllat m k t the use of optimal control am the drug bust hlrdtegy, topimil pndi~ctiun, optimal conmd in diwrclc mc~hanics,pllicy arangcmcnl and thc myalty payment pnlhlcm 15.7-91. *Comspiw~dingaulhor khtlcll ctr M n ~ k m a d c sand Stidslim, Ilnivmily of Shctlicld. Shcllicid Pi3 7K11. lJnillrl Kin~dtm~. 1:-rnai.1~:;1:r$1t1hr:@<hcllic1d.ac.uk :' appl)Xs&:&~hulticld.~.~~k 64 A NON-STANDARD OPTJMAL CONTROL PROBLEM ARISING IN AN ECONOMICSAPPLICATION In a recently studied wonomics prohlum a firm struggling will1 inttnsivcly low demand imf their product will purposely incmsc t hc marginal cost by rcdreing t hc production o r the product and incrmscthc sclling m c c II 11. I'hcmlimrc the wquircmcnt 10 pay a flat-rate n~yaltyon wlc has the c f f w ofincm~singthe marginal cost and rhcrcby Qccrcasingthe olitpul whilc simultaneously incm5ing thc pricc. 'I'hc cr~c?ctof permitling a nonlinear n)yalty I c d s ti) u n o n - s ~ a n d dI'oV orsolving Lllc prublcm not previously considcrcd. In this papcr wc will dcmcmstratc somc p r o h l ~ mwithout discussing thc prccisc c~onomicsdcuils. Lct us start by considering a simplc problcm. Wc wish to dclcmiinc thc control runc.tion r r ( t ) whcru L ( 10, 7' 1 that maximiws the integral fiunctiowal N O ) with ~ ' ( 0known ) and lc difknlnlial cqudion $ sllhjcct sdisrying ~ h ~c ~ : ioniinary thc endpoint state valuc y ( T ) at timc r = T unknown. Tllc Lagran2ian intcgratid dcpcnds on the unknt~wnlinal ralucy(7') and rhis is nit a skmJard optimal ctmln~lprohlcm bwausc l c lirnaion dopcnds on ?(TI. A standard optimal control often solves a problem with thc final state ,FIT) rrw and [hen thc boundary mndition p(T') is ~ c r o1 121. 'l+c iIamiltonian f i ~ opiirnal r contrid thcory arises wllcn using Potitryagin's hiIinimtjn1 Principle (PMP) [13]. It is uscd to find the optimal a)nln>l Tor taking a dynamicdl system Iixrrn one s ~ t LOc xnothcr a~hjcctto satisrying thc undcrl ying ordinary dift'crential equations [12]. Wc introduce a continuuus approximation of thc picucwiw conslant intcgrdnd runction hy using a hypcshc>licLangcnt appnuch. 'I'he prcxanl piper will indicatc how such problctns can be sol\rcd. In thc acxt section wc wiil discuss thc theoretical q p n w o h in o d c r t o solve the problem. IVc will fi,llow tho work oTMalinowska mn id lilm 161, in proving thc boundary condition for CoV [2]. Then wc will dctnonstratc a numerical cxamplc and wo will IISL' (: I I Lo solve il. We also cornparu 1hc rc$ulk wilh a nonlinear pn)gramming(NI') discrctc-time appmqch and then prcscnt somc conclusions. 2 NUN-STANDARD OPTiMAL CONTROL In classical optimal control problcnls. the function (1) docs not depend specifically on tlic frcc value -v( 1'). I lowover, in our caw, lhc I agrmgidminirxrdnd runction 1 d~qwndson ~ ( 7 ) . We prcsent a rcccnt thcorem that indicates that y ( T ) is cqual to a certain intcgnrl at timc T. Malinowska and li~ms161 harc proven rhis hounda~condititm for C:oV on limc scales 121. I'hc tbllowing t h t w m c m bc applicd to our problem. 'fhcnrcm: 16.71 If j c .) is thc solution of thc following problcm ksquisa Operacional. Vd. 33(1), 2013 ALAEI ZINOBER and SUUADI SUTAI IAN1 4hcn fur all 1 E d F [ f .,E(/), dl: P. 10. 1.1. M o ~ ) \ w j(&), : ~ ( l j= ) f;:(f. j(/), j [ f 1. j(1.)) 1;rom an ovlimal wnln)l penpcxtlvconc 1 12. 13 1 ha%thccc~talop ( ? ' ) Hcncc p(T) = - I' fi 65 f < { t . ji~). ; ( I ] . y(?'l)- (r. ~ ( t &r). ) . j t l-l)'/r (6) where p(f is the I lamiltt~nianmul~iplimor ciwtale runcticm. Ihctmm 1 shows lhal lhc nCLiC'ssary optimal condition docs ~iothavc p l T ) = O as is thc case for thc standard classical optimal coritrol pnlblcm. Suppose that wc wish Lo considcr a pia..cwisc consrant functiorl f' in (2). For cxamplc, considcr w hcm : .vi 7) and and ?+' = with r r and a h for J. .:0.5: for 1 > 0.5,- t~ rcal nuniberr. We have a discontinuous intwgand thal cannot hc difrercntiatcd ax mluircd in ihc final bour~daycondition (71. WC introduce a conti~luousapproxin~wlionof thc piwcwisc ujnstanl int~grdndfunclion by using a hyperbolic tangent appwdch in c d e r to have a continuous smooth li~nc~ion. Illl~cfappwximaiions haw been lricd but thcy rquircd hundrcds of terms, fir insmcc in a Fourier strius approximation. 'Ihu tanh(kj) q r c ~ x i m a ~ i oused n hen: is vcry accutatc. A numerical cxsmplo will hc prcscntud in thc next swlion. 3 NII%lRKlCAI~EXAM PI,E 'Jhc cxamplc is a sin~plificdvcrsion ofthc propclscd monomics problcms bul has thc samc main t a t u m . I'he sutt: qualion (Olfl! system) i s dwribed by We wish lo rnaxirnisc .//(-)I = I' ( { t , y t ~ ]~ .( b ) .:)dl (10) i s a contintlous function and T = 10. W{y) is a piecewise constaiit function where W (J) = I I 1.2 for .I. ( 0 . 5 ~ fur 3 =. 0.52 1% :ippmximatc W ( y )using a hypcrbulic tangcni fi~nction 450 say. llilr larger values of 4- wc obtain a smrwthcr Ici approximation of tlic filnctiori F t ' ( j ) (scc Fig. 1). Thc known initial statc is y(0) = 0 and final s m c valuc : y i 7 j is lin.'l'hcrclirrc ~ h Iclamilionian is dcscrihcd by H [ I .J., i l l p ) 1 p.lt ant! w c sclc~1A- s u i ~ b l ylarge. and 'I'hc wsmc saLislim The stationarity condition is If,, = 0 and this yiclds MAN ZINOBER and SUUADl SUrAllANl -- - 67 Ilquarion (6)holds a) Wiy) 4 ( !if) - ( ~ ) ? * { t ) ) ) d f sin RESULTS I here are several necessary conditions that need LU be wtisfid, such the stare equiltiun (9) and thc costatc quation ( 16) along with lhc stationariiy condition (17). Also thc initial condition of y(i)) is given and we select ti guessed initial wlue of'p ( O ) . We alw n d to make bure the boundary condition of ( 18) wH1 bc saiisficd :it the finit1 time. I-, 'This is a two point boundary e r osed in (1 7) will be qua1 to L'I/') value prublen~.We need to m b u r e that tlie ite:raliun ~ x l u of a1 the final time 7'. 'This is satisfied in our algorilhm only whcn tllc p(7') boundary condition co~iverges. I'hen we will have the optinltll sulution. 'llie rnir~i~~~ising h e value XI 1')is calculated in an imtcr loop iteralion using ihc Goldcn Sccrion (or Brcnt) maximising linc search algorithm We used the I \ . ~ w T Ishouting met1:tlludwith 1 w p u e d values 1:1 = ptO) and v2 = pr i'). We usc thc programming languagc C i I in urdcr lc) wlvc Lhc shooting nlcthvd and oihcr algorithms described in the NurnMical Keceipe librdry 181. We itmite the system with the m t e quation ~ ().ct o s ~ a equation c p(c), the inlcgral of q!t and Ihc cost function J l t ) . An optimal solution ivzis u b ~ a i n du i t l ~high accuracy, Tlie msulls are I:igurcs 2 4 shows ~ h optimal c cuwcs o r ihc skdlc? variahlc y(t ), adjoint varjablc integml ciaIl) and the control variable t i ( ! 1. Iiigurc 2 - Siare u time shootin$ algorirhm. /,(I) and the -G.B 0 2 6 4 S 1C 5nie k3"lpre 3 - Castale v time slming algorithm. 3 C5 0 2 a 4 8 1U tine Figure 4 Control v tinie shooting algorithm. 11s a ucjmpa~itivc:qpn~ach,wc used a dificmnt lu-mlincarprt~gmmmjng discrcic-time lecbniqur: to solve lhe .sanle problem [ I , 71. We solved the problem using Euler and also RungeKutta discrcdwlicln, and an optimi./alion algoriihm in i~rticrt o solve thc unknown u~ntmlvliriablcs u i at mcll time [ A [ll. We used the AMPI. program language 131 and the MINOS nonlinear solver with 45 time slcps in o d c r to stilvc ~ h pmblcm. c I:igurcu 5 7 show \:hc plot of optimal rcuulb for h o ~ hl c shooting and mnlincar p ~ ~ g r a m m i n g {SP)appmaclles fbr the state variable y (t 1, cosiate arrd contrl variable ri ( I 1. The wsults are ewcniidly the umc. 'I'ke NI' rcuuku arc gtwd but the I lamillr~nianuhcn)ting appvach 1s a much more accurate approach. In this paper we Iravve sliown ho>w to solrc a non-standard optimal ccmlrol pn>hl~m-Wc hare p ~ ~ c n l thc c d ncccssary conditions and Ihc wn~pulationalproccdurcs in order to obtain optimal so)lulbn~.'lhc ckplirna1solcllitrn ol'a lust pwhlern has h~wnprcswtcd. A shtxliing algi~rithrntogcthcr with a n~wimisingapproach was used to obtain a highly accurdc solution, and con1p:urd wilh a discrc~c-timenonlinear pn~grdmmingsolution. Our ~cxhniquwcan bc applied 10 the 'ach ~ a lmthcr morc wmplicalcd ccononlics problcnl whcrc thc Lagrangian inrcgrand is pic~czrise ctbnstani in many s ~ g and a depends upcm !(I') which is a prk~riunknown. Pesquisa Operational, Vol. 33(f). 2013 70 A hW3KSTANDARD OPTIMAL CONTROL PROBLEM ARISING IN AN EGOhlOMlCSAPPLlCATlON Figure 7 Statc v tinw shooting aid NP(x) algorithn~s. MAN ZINOBER and SULLADISurNiwl 7* 111 RI:TTS JT. 2!Ml. Practical mcthads for uptinrat control using nonlinear, Advances in I'w~trol,Sccicty fur lndi~slnaland AppIiu1 Maiktmluics (SIAbl), Philadelphia. PA. 121 Fli12HI:I I<A 1tAC & '1.o~ I ~ II)FM. - s 200X. I lighcr-orticr camlculr~sor varialions on timc . w ~ l aMaihenialical c~ntroldrtory and finance. pp. l4c)-150. Springer, Berlin. [3] FoLRlrR R, CAYDM 8c KI.:RN IC; t l h ~ BW.2002. A W L : a nlodelling language for ma~hcmalical programming, Duxhry, PmQf3rooksKolc Publishing Comlmny. 141 S I I . I . A ~I;.I 2(K)9. liw~iltaiiai~ q p n ~ a c hto uptinlality coiditiuns in ~wntrol111cury and nousnuwlh anindy~iq.N{~ncmtullhanalyrjc convc)l t h a q w d dl Ecrcn~ialcrliations, I N DAM, liomu. and hUp:~~e~~en~.math.t111ipd,i~nac1deO~sit~'deI'a111b~Iil~'stehni.~C [5] LEOU.%RI) D Bi LOKGRV. 1992. Oplimal control ~hcon.and static optimiwlion in xonon~ics, Cambridge IJt~~vcrstty Press. C'anlbndgc. IOJ M A l . I h o \ k ' s h 4 A tl & 'I ~ K K :, I I)Phl. 2010. Naturiil h ~ u n h ywnrlitions ill t h ~ calculus of' w i a i t ~ n s -:%Ia1lii*1?1uitcu/ .WVIJ?IJC/\ H I I ~ C,.fpp/ic,d -%.~C~IIPPS-33f 14): I 7 I 2 I722 Wilcy. do1 10.1OOXmma. 1289. [7] PI.:I)ROAFC. TORRlis DIiM & ZlKOl%t-'R ASI. 2010. A non-ulassical class ofva.arialiona1problcms with application in economics. ~~r~c.~-nuiioncti Jcntrnul (I/' :-/rrilicrtturicrrl 2$fr.lr,d~*IIirtg UIIJ:Viint~>,-ir.u! Oj."ir~zivt:lriiorr, 113): 227 230. Lncl~rSdcncc.tltji: 10.1 5W.4.I MMNO.20 10.031750. 181 I'KI SS WII.'II (JKOJ S K Y sn. Vt 1 l l HI lhr; w I.& k l A h V l KY 2007. N ~ ~ r n c r i c a l r w i ~ . ' l h c ai%ol-giaitific conlpuring. lXrc1 edition. Cambridge Lnir. Prehd. Cambrid-ge. [9] SI.:TIIISP & TIIOMPSON GL.3000. Oplimal control theory Applicalions on nlanagctliet# scicncc and wonomics. SLxond edition. Kluwcr rycad~micPublislwrs; ikston, Mi\. 4 10] V I N 1-1 I( H. 2000. Systcrn and ccmtrol: fuu~~dation and application oplinull control. 1Erkhu I3aslu11. Springer-Vcrlag KL% York, NcW Yt~clrk. 1 1 1 1 .ZINLIIIIII~nsl KAIVA'V'III K. 20nX. Opliimal prr~ducliansuhjiwl tc) pi~y:cwi.wmndnoous n~yally payment obligations, in~enlalrepun. 11.31 PIN(-11 I'K. 1993. Optimal control and Ihc calculus orvarialions. Ilxliml Ilni~cmityf'ms. 0sfi)rd.
© Copyright 2025