LIOS Inorganic Nanoparticles: From colloids to photovoltaic devices E Arici1* , J. E. J N. N Feritas2, N. N S. S Sarıciftci1, A.F. A F Nogueiria2 1Linz Institute for Organic Solar Cells JKU, Linz 2Chemıstry Depatment Unıversıty of Campına Brazil Overview • Synthesis principles of inorganic QDs • Organic-inorganic hybrid solar cells – CdSe QDs as electron acceptor – CuInS2 QDs as electron donor LIOS What are Quantum Dots (QDs)? Photostability Compatibility with diverse matrices Broad Absorbance Range g High : 106 M/cm3 OPVs Tunable Colors via QD size Single Excitation Source EQE: 12-60% QLEDs Diagnostic Marker LIOS Quantum Confinement LIOS Absorption p of CdSe QDs LIOS Increasing size of the QDs leads to lower band gap & higher extinction coefficient Synthesis:Hot Injection LIOS Role of the surfactant LIOS (TOPO) (HPA) Shape control Anisotropic growth of CdSe QDs Faster growth in c axis! Main reason: CdSe in wurtzide structure - Different number of dangling bonds at 001 face only TOPO TOPO/HPA: 85/15 LIOS Synthetic controll of the anisotropic growth - High monomer concentration - Face selective surfactants TOPO/HPA: 80/20 Overview • Introduction to inorganic QDs • CdSe QDs as electron acceptor in bulk heterojunction solar cells • CuInSe2 QDs as electron donor in bulk heterojunction solar cells LIOS First CdSe/polymer hybrid solar cells LIOS Device structure P3HT P3HT CdSe (TOPO/HPA) W.U. Huynh, J.J. Dittmer, A.P. Alivisatos Science, 295 (2002) 2425 Hybrid concept LIOS in bulk heterojunction devices Effective charge separation High interface by fabricating blends Effective charge transport Percolation of each component in the interpenetrating network Electron donor Electron acceptors PCBM CdSe [2 nm-4 nm] First Tests HR-TEM image of TOPO capped CdSe LIOS Photovoltaic activity Absorbance Curren nt [mA/cm m2] 20 wt wt.% % PFT Voltage [V] PVT/PCBM/CdSe blends Variation of CdSe/PCBM ratio in 20 wt.% PFT LIOS Energy scheme of the device PCBM/CdSe 0:1 0.3:0.7 1:0 0703 0.7:0.3 1:1 - Increase of photo current and open circuit voltage using CdSe QDs in organic bulk heterojunction solar cells Morphology studies AFM images of PVT blends PCBM/CdSe:0.7/0.3 PCBM/CdSe:0/1 PCBM/CdSe:1/1 PCBM/CdSe:0.3/0.7 Phase separation by increasing CdSe ratio in the blend LIOS IPCE depending on the size of CdSe QDs in PFT/PCBM blends LIOS PCBM/CdSe:1:1 in 20 wt.% PFT 4 nm 3 nm 2 nm Increasing the QD size leads to an increase of the photo current LIOS • Introduction to inorganic QDs • CdSe QDs as electron acceptor in bulk heterojunction solar cells • CuInSe2 QDs as electron donor in bulk heterojunction solar cells Synthesis of CIS/TPP HR TEM HR-TEM CIS O P LIOS O O CIS/TPP 5 nm “Synthesis and characterization of nanocrystalline CuInSx for applications in organic/inorganic hybrid solar cells” E. Arici*, N. S. Sariciftci, D. Meissner, Molecular Crystals Liquid Crystals, Vol. 383, pp 129-136 (2002). Materials and Device Structure CIS O P O O CIS/TPP PCBM O O O O S S S S n + O O O O * O n SO3- * * S O n * SO3H PEDOT:PSS Poly(3,4-ethylene-dioxythiophene) /poly(styrenesulfonate) CuInS2 acts as electron donor/ PCBM as electron acceptor LIOS Thin film preparation LIOS AFM from acetonitrile 50-90 nm from Pedot:PSS (6:1) Agglomerate size 70-120 nm Phase seperation in thin layers(~100 nm) spin cast from PEDOT:PSS/CuInS2 dispersions leads to an increase of the agglomerate size. CIS Hybrid Solar Cells • Light harvesting in the range of 350-950 nm •~ Maximum IPCE of 20 % g the device configuration: g ITO/CIS+PEDOT:PSS/PCBM/LiF/Al using “Hybrid solar based on nanoparticles of CuInS2 in organic matrices” E. Arici*, N. S. Sariciftci, D. Meissner, Adv. Funct. Mater., 13, 2, 165-171 (2003). LIOS Conclusions •Photovoltaic activity of solution processable CdSe and CuInS2 monolayers •The The prove of the concept using CdSe and CuInS2 nanoparticles in hybrid solar cells for enhanced light harvesting LIOS Acknowledgements I thank to all the collegues in LIOS LIOS, who supported my work in many ways! LIOS members: A. Mammatimin, D. Egbe, A. Workneh, A Montaigne P Thomyonkit, A.Montaigne,P. Thomyonkit M. M White, White A. A Pivrikas, Pivrikas P. Stadler, M. Bednorz,J. Gasiowski, E. Mujenovic, K. Oppelt,M. Kruijen,A. Fuchsbauer,M. Egginger, D. Hoeglinger, G. K l b M Kalab, M. Li Lipp, H H. N Neugebauer, b N N. S S. Sariciftci S i ift i Currently founded by Ministery of Education and Research, Elise Richter Programm, Austria. j Nm. AE 3486 123 FWF Project LIOS
© Copyright 2024