L.G.M is a company turns into service, quality and innovation. Improve quality of our service, make known or recognize the efficiency of our organization on the national and international market are targets that LGM renewed regularly since more than one half century. Our professionalism, our know-how and our reactivity enable us to extend our range regularly and to improve our service. Without distinction of quantity we take the greatest care to all our productions. Quality is the business of all. It concerns the management and the employees of the company whatever their functions. Our handbook of quality, at the disposal of our customers, summarizes the procedures formalizing the organization of work, the control of the processes, the self-checking, the manufacture and the follow-up of the orders, the maintenance of the materials. Our team, always at the listening of the customers, regularly develops new products and studies at the customer request special cables answering specific requirements. Moreover, datasheets resulting from our laboratories attest qualities of our products subjected to particular constraints. All these tests are based on our 67 years’ experience in the field of wires and cables for electronics and electrical engineering. Page 1 of 28 PRESENTATION OF THE COMPANY ACCESS PLAN LGM Company is located at the following address: LE GUIPAGE MODERNE 5, rue de Bicêtre 94247 L’HAY LES ROSES CEDEX You can also join us by phone or by fax: FRANCE Tél. : 01.46.75.96.96 Fax : 01.46.75.34.84 INTERNATIONAL Tél. : 33.1.46.75.96.96 Fax : 33.1.46.75.34.84 E-mail : [email protected] Page 2 of 28 UNIT WIRES On base of our covered or stranded wires, we use following materials: AVAILABLE CONDUCTORS - Bare copper: This annealed copper forms part of the main productions which do not require specific features. It is suitable with the standard NFC 31010. Description of wire: Cu R - Oxygen-Free-High conductivity copper (OFHC): It is used for his high conductivity. It is suitable with the standard NFC 31010. Description of wire: Cu OF - Aluminium: Used in aeronautics because of his low density in comparison with copper: 2,7 instead of 8,9 (69 % less in weight). His electrical resistance (2,65 µΩ.c.m) is 50% more than copper. His thermal conductivity (237W.m-1.K-1) is 40% less than copper. - Constantan: Used in the production of thermoelectric couple sets of type TN after insulation by a double natural silk layer. Description of wire: Cu Ni 44 - Nickel, stainless steel, iron, etc. Used in varied applications, after insulation by covering with: Cotton, Silk, Nylon, Kevlar, Kermel, Kapton, Teflon, etc. - Silver plated copper wire or pure silver wire: Especially used in the Hi-fi field after insulation with natural silk or cotton. THE DIFFERENT COATINGS OF COPPER - Tin reference RE Description of wire: Cu RE - Enamel reference SF Class: F Temperature index: 155°C Solderability: good at 375°C Standard: IEC 317-20 / NFC 31670 Description of wire: Cu SF - Enamel reference TA Class: F with low temperature self-bonding layer Temperature index: 155°C Solderability: good at 375°C Standard: IEC 317-35 / NFC 1685 Description of wire: Cu TA - Enamel reference SH Class: H Solderable Temperature index: 180°C Solderability: good at 390°C Standard: IEC 317-51 Description of wire: Cu SH - Enamel reference HP Class: H200 Temperature index: 200°C Solderability: bad. Impossible with tin Class: IEC 317-13 / NFC 31663 Description of wire: Cu HP - Silver reference Ag Description of wire: Cu Ag Page 3 of 28 - Enamel reference TD Class: H+ with high temperature self-bonding layer Temperature index: 200°C Solderability: bad Standard: IEC 317-38 / NFC 31688 Description of wire: Cu TD THICKNESS OF ENAMEL’S LAYER Grade 1 or 2 BASIC CONDUCTORS DIMENSIONS Nominal diameters of conductors are given without coatings. They measure from 0,032 mm to 3 mm The space factor of wires must be calculated with the biggest enamel layer that is possible. Overall diameter, copper cross section or constructions are available on request. Page 4 of 28 INTERESTS OF LITZWIRES TECHNICAL ADVANTAGES LITZ, this generic term designates the various cables realised with unit conductors in enamelled, solderable or tinned stranded copper wires and possibly insulated by textile covering. The use of those varnished wires and cables reduces the losses due to the skin effect, in order to improve the electrical efficiency of the windings working in high frequencies or in low frequencies with high harmonic rates. APPLICATIONS 1 – INDUCTIVE SENSORS: Litz wires, thanks to their low resistance to high frequencies, improve the quality factor. This result increases with an insulation by a double silk layer covering. This is due to the low tan δ implied by the natural silk. Consequently, the Q factor increases. 2 – POWER ELECTRONICS: In the production of transformers and coils for high frequencies, or high harmonic rates, Litz wires allow to get a better ratio between power and volume, with a higher reliability due to the output improvement. Losses decrease thanks to a reduction of the HF resistance, by skin effect, using stranded wires. Moreover, in many transformers with ferrite-based magnetic circuit, it is necessary to create a small air gap which unfortunately increases leaks of the magnetic field. Those leaks cause overheatings in the windings by E.M.F. current. The use of stranded wires is an excellent remedy to overcome those parasitic overheatings.On the whole, Litz wires remove the drawback of slow carbonization of the central turns in a HF winding while allowing to create air gaps in order to avoid the magnetic circuit saturation. 3 – MICROELECTRONICS: For the high frequency, order of the Mega Hertz, we recommend Litzwires of very small cross sections. The compositions carried out starting from enamelled wires ranging between 32 microns and 50 microns give good results. Page 5 of 28 For the problems of coupling in H.F., twisted wires composed by 2 or 3 strands and of diameters located enter 100 microns and 200 microns are interesting. But the pitch must short. LGM Company has a machine stock for the stranding of extra thin enamelled wires, for very small windings. The pitch of twisting can be adjusted between 1 mm and 25 mm. We can accept several tolerances of pitch: ± 5%, ± 10% and ± 20 %. Tolerance and pitch’s length have an important effect on price. Enamelled wires used are: wires with low temperature self bonding layer, F Class, grade 1B with different colours or thermosolderable F Class, grade 1. For examples: 4 x 0,032 – CU TA 1 – NG 5 x 0,050 – CU SF1 – NG 2 x 0,100 – CU SF2 – NG On request we elaborate technic specification on wire asked: - Number of units wires Number of strands Sort of enamelled copper Diameter of strand Pitch’s strength Strand’s resistance CALCULATION FORMULA The skin EFFECT, or KELVIN EFFECT, is characteristic of the currents spreading in the conductors. It causes the resistance increase in comparison with its value in direct current. As the alternating current goes only through one part of the conductor, it tends to spread only on the wire periphery, all the more so since the frequency is higher. The “conducting layer” depth can be calculated with the following formula: δo = ρ and δo = 564 πµf ρ µf with δo = penetration depth in mm ρ = conductor resistivity (for copper: ρ =1,75.10-8Ω.m at 20°C) µ = magnetic permeability = µ 0 µ r µ 0 = 4.x.10-7 And µ r = relative permeability of conductor material ( µ r = 1 for copper and other non-magnetic materials) f = frequency of the inducing current in hertz Page 6 of 28 For a copper conductor: δ o= 74 F at 70°C, δo in mm BUNCH STRAND’S STRUCTURE For bunches of Litzwires, dimensions are between 0,064 mm and 25 mm of diameter. Cables’ cross sections are located enters 0,004 mm² and 200 mm². We can shape it by rolling the wire in square or rectangular section. Rolling is possible on cables from 2,5 mm² to 150 mm². Number of strands can be between 2 and 56 000. UNILAY-FREE Bunches are an assembly of several enamelled copper wires. For large cables, several stranded wires are bunched together. In this type of cable, the wires do not have a definite place in the conductor. In the majority of cases the assembly step direction is the same for all wires. Litzwires are stranded on UNILAY-FREE, (bunches not tight or free). The winding’s direction of the layer is the same. ASSEMBLY STEP DIRECTION Our standard model direction is left hand lay S or Z on request, but we can also respect following structures. UNILAY WIRING’S DIRECTION Page 7 of 28 Wiring in alternative direction or wiring –S/-Z Câblage S (on left) Câblage Z (on right) CALCULATION OF NOMINAL OVERALL DIAMETER OF WIRES CONSTITUTED BY ASSEMBLING ELEMENTARY ENAMELLED WIRES UNDER TEXTILE LAYER – ACCORDING TO NFC STANDARD 31010The nominal overall diameter is determined by the following formula: D = ρ . n .d + thickness of covering With: D = nominal diameter of wire (on textile layer), p = space factor, n = number of elementary enamelled wires, d = overall diameter of an elementary enamelled wire Number of elementary wires Space factor 3 to 6 7 8 to 12 16 20 25 to 400 1,25 1,15 1,25 1,26 1,27 1,28 STRANDING PITCH Short pitch: LITZ flex, good holding of each strand, better roundness. Long pitch: LITZ stiffer, less good holding, better spreading for filling. Pitch can be adjusted between 1 and 500 mm. We can accept tolerances of ± 5%, ± 10% and ± 20% knowing that our standard one is ± 20% with a minimum of ± 1mm. Page 8 of 28 ME DE FABRICATION U.S. CROSS SECTIONS (AWG) AWG n° Unit wire diameter mm Section mm² Diameter inch Round section mils 5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 13,12 11,68 10,40 9,27 8,25 7,35 6,54 5,83 5,19 4,62 4,11 3,67 3,26 2,91 2,59 2,30 2,05 1,83 1,63 1,45 1,29 1,15 1,024 0,912 0,812 0,723 0,644 0,573 0,511 0,455 0,405 0,361 0,321 0,286 0,255 0,227 0,202 0,180 0,160 1,143 0,127 0,113 0,101 0,0897 135,1 107,2 85,0 67,5 53,4 42,4 33,6 26,7 21,2 16,8 13,3 10,6 8,35 6,62 5,27 4,15 3,31 2,63 2,08 1,65 1,31 1,04 0,823 0,653 0,512 0,412 0,325 0,259 0,205 0,163 0,128 0,102 0,0804 0,0646 0,0503 0,0400 0,0320 0,0252 0,0200 0,0161 0,0123 0,0100 0,00795 0,00632 .5165 .4600 .4096 .3648 .3249 .2893 .2576 .2294 .2043 .1819 .1620 .1443 .1285 .1144 .1019 .0907 .0808 .0720 .0641 .0571 .0508 .04526 .04030 .03589 .03196 .02846 .02535 .02257 .02010 .01790 .01594 .01420 .01264 .01126 .01003 .00893 .00795 .00708 .00630 .00561 .00500 .00445 .00397 .00353 266.8 M 211.6 M 167.8 M 133.1 M 105.5 M 83.69 M 66.37 M 52.63 M 41.74 M 33.10 M 26.25 M 20.82 M 16.51 M 13.09 M 10,38 M 8.234 M 6.530 M 5.178 M 4.107 M 3.257 M 2.583 M 2.048 M 1.624 M 1.288 M 1.022 M 810.1 642.4 509.5 404.0 320.4 254.1 201.5 159.8 126.7 100.5 79.70 63.21 50.13 39.75 31.52 25.00 19.83 15.72 12.47 Page 9 of 28 GENERAL CHARACTERICS OF COVERED WIRES - ISULATORS : The preferential insulators used are: - Natural silk (1, 2 layers or more) - Nylon (1, 2 layers or more) - Cotton (1, 2 layers or more) MECHANICAL, THERMAL AND ELECTRICAL CHARACTERISTICS - NATURAL SILK: High flexibility Low space factor: 4/100 mm for 1 layer, 8/100 mm for 2 layers (diametrical reinforcement). Low resistance to abrasion. Recommended for thin wires: Ø < à 0,14 mm To be used at a maximum temperature of 80°C Dielectric strength: on request following the structure Colours: white, red, green, blue - NYLON: 66 Polyamide-based fiber Higher space factor than silk: 5/100 mm for 1 layer – 10/100 mm for 2 layers Better resistance to abrasion (50% higher than silk) Recommended for wires with Ø ≥ 0,15 mm To be used at a maximum temperature of 160°C, F Class Dielectric strength: on request following the structure Colour: white - COTTON: Colours: white or red. Other colours on request - POLYESTER: Colours: blue, yellow or white - ARTIFICAL SILK - ACETATE Page 10 of 28 STRANDED WIRES (LITZ) - LITZ WIRES: High frequency from 250 KHz to 5MHz - SILK INSULATED for low space factor windings, high insulation and high coefficient of overvoltage - HALF-COVERED WIRES (garland) 1 or 2 layers of white natural silk (it can be an other colour). White nylon. - NYLON INSULATED for windings working at high temperature. CHARACTERISTICS - Elementary strand diameter: 0,032 – 0,040 – 0,050 – 0,063 – 0,071 – 0,080 mm - Copper cross section: 0,003 to 200 mm² - Overall diameter: 0,08 to 30 mm - STRAND WIRES (LITZ): From 100 kHz or 250 kHz. - COVERED OR NOT-COVERED WIRES: for windings on magnetic circuits, ferrites, working in rectangular or sinusoidal currents (decreasing of the overheatings caused by skin effect and, above all, by E.M.F. current). CHARACTERISTICS - Unit strand diameter: 0,10 – 0,14 – 0,20 – 0,28 (other diameters on request). Annealed copper. Grade 1 solderable enamel. F Class (155°C) solderable at 375°C or H class (180°C) solderable at 390°C. - Assembling: it depends of the copper cross section which defines the number of strands. On request constructions that give an optimal permutation to conductors are available. - Copper cross section: 5 to160 mm² - Overall diameter: 0,6 to 25 mm. -Overall wrapping: Polyamide fiber (Nylon) allowing the impregnation of the winding with F Class varnish – Glass fiber tape (CETAVER) Page 11 of 28 STRANDED CABLES (LITZ) - STRANDED CABLES (LITZ) Frequency ≥ 10 KHz to≤ 100 KHz - COVERED OR NOT COVERED: for windings which require to minimize losses by skin effect and E.M.F. current. CHARACTERISTICS - - Unit wire diameter: 0,28 – 0,40 – 0,63 (other diameters on request). Annealed copper, Grade 1 solderable enamel - F Class (155°C) solderable at 375°C or H Class (180°C) solderable at 390°C - - Assembling: it depends of the copper cross section which defines the number of strands. On request constructions that give an optimal permutation to conductors are available. - Copper cross section: 5 to 120 mm² - Overall diameter: 3 to 25 mm - Overall covering: F Class polyester felt tape allowing impregnation by varnish. H Class Polyamide paper tape – Fiber Glass Tape (CETAVER). Page 12 of 28 SELF-BONDING LITZWIRES WINDINGS OF INDUCTIVE SENSORS TINNING - WELDING Direct, without striping, by soldering iron or tin bath. The fusion welding temperature advised is about 390 °C. WINDING Respect the admissible tensile strength. Page 13 of 28 BONDING The necessary temperature to bond is contained between 140°C and 170°C. The time required to stick depends on the cable size and on the energy source. METHODS OF BONDING • • • By heat supplying during the winding. In the oven, after winding. By short electric impulse. 1 – Polymerization with heat By blowing heat, the layer of thermoplastic is softening and that dragging a bonding of the wires. Heat draught temperature depends of the enamel’s type, diameter of the wire and grade of enamel. It is also in function of the speed, shape of winding and distance between the blow and the wire. Usual temperatures of this blow are from 190 °C to 230°C. 2 – Polymerization in the oven As the reel is finished, it is warmed in oven. This drags a polymerization of the wire’s mass. The time of warming depends of the size and shape of coil. It must be measured in order to obtain a heating well-shared. This process is relatively long. It is recommended for wires with diameters higher than 0,10 mm. 3 – Polymerization by short electric impulses The winding is warmed by using of a constant pulling strength that dragging a bonding of the wires. The process of polymerization is regulated by electrical power and timing. It should be great to obtain by the period of polymerization a homogeneous sharing of temperature in the winding. It is recommended for wires with diameters higher than 0,10 mm. 4 – Polymerization with solvents During the winding, wire receives a solvent that dissolves the layer of low temperature self-bonding. In drying the solvent, wires are bonding together. As solvent, we use several alcohols like methanol and ethanol. Acetone is not appropriate because it attacks enamel on base. To drain off the solvent, it is recommended to heat the reel in an oven after winding. Using limited to windings with low numbers of turn. Recommanded for diameters until 0,10 mm. Page 14 of 28 SPECIAL WRAPPED WIRES KAPTON, NOMEX, POLYESTER, MICA, GLASS BRAID These wires can be unitaries or twisted. Usually, they are realized with round enamelled copper wires, and they can be rolled. For bare copper wire or enamelled strip, we can study your specific request. Table of standard productions – L.G.M. * INSULATION: The insulation is realized by wrapping Covering: 30% or more (1) Thickness: see table above (other thicknesses on request). LOSS FACTOR (2) : KAPTON NOMEX POLYESTER 0,0025 0,010 0,005 R.H.: 50%. Frequency: 103 HZ (2) The figures indicated below are averages: they must not be considered as specification. Page 15 of 28 LITZWIRES COVERED KAPTON FOR COILS AND TRANSFORMER WINDINGS In new technical designs meant to extreme conditions of temperature (-273°C to +220°C) GENERAL POINTS: Kapton, F Type used for insulation of coil, guarantee thermic class 220°C. It has a good resistance to the flame (the best in the standard UL 94). Kapton does not maintain or propagate the flame. It does not melt and it does not weaken. KAPTON: It can assure his function after a short exposure to + 260°C, It is still supple at 273 °C with no detriment of his properties. Moreover it conserves its dielectric strength at high temperatures. It is compatible with high temperature varnishes, including Polyamide, Extrémides, Epoxy, Silicone, Amides-Imides and Organo-Silicones. PRODUCTION RANGE OF WINDING WIRES (CHARACTERISTICS AT 25°C) BRINS ELEMENTAIRES NAME ROUNDS WIRES LITZ WIRES stranded wires DIAMETRE DES FILS OU SECTION CUIVRE CABLES ISOLATION KAPTON MIN. MAX. MIN. MAX. MIN. MAX. mm mm mm mm mm² mm² - - 0,80 2,5 0,50 4,9 25-50-75 microns 0,10 1,2 0,80 18 0,50 160 25-50-75 microns USUAL INSULATION: It is realised by “Kapton” wrapping. Minimum 30 % covering. DIELECTRIC STRENGTH (FREQUENCY 50HZ): 5 000 Volta (25 microns) 8 000 Volta (50 microns) 11 000 Volta (75 microns) We have in stock Kapton tape with a thickness of 25 microns. DISSIPATION FACTOR: Tan δ< à 50.10-4, the favourable value of the dielectric constant and of the dissipation factor combine to reduce the weakening of the high frequency signals to minimum. NOTA: Our technical services are at your disposal for all studies you would like to entrust them. Calculations of diameter and of main characteristics, on phone call or fax We use the following description: 250 x 0,200 – CU SH1 – 1Kp Rb 15 – Rc 30% This product is realized with 250 strands of 0,20 mm, in solderable enamel copper, H Class, grade 1, and wrapped with one layer of KAPTON (width : 15 mm ; covering : 30%). Page 16 of 28 LITZCABLES OF HIGH POWER STRUCTURES From enamelled wires Grade 1 or 2 Unit wires diameter: 0,20 mm Frequency: 0 to 250 KHz ENAMELLED WIRES CLASS (must be precised on the order) F Class H Class H Class H Class C Class 155°C solderable at 375°C (IEC 317-20) 180°C solderable at 390°C (IEC 317-21) 180°C not solderable (IEC 317-22) 200°C not solderable (IEC 317-13) 220°C not solderable (IEC 317-7) STANDARD RANGE (See table below) (enamelled copper wire H Class 180°C solderable at 390°C 317-21) NOMINAL CROSS SECTION NUMBER OVERALL DIAMETER. RESISTIVITY AT 20 °C STRANDS IN MM (GR.1) (OHM/KM) Cu mm² Nb Mini Maxi Mini Maxi 20 (19,79) 40 (39,60) 60 (60,30) 80 (79,10) 100 (98,90) 120 (118,70) 630 1260 1920 2520 3150 3780 6,97 9,72 12,00 13,75 15,37 16,84 7,26 10,27 12,68 14,52 16,24 17,79 0,831 0,415 0,273 0,208 0,166 0,138 0,914 0,456 0,299 0,229 0,184 0,153 LENGTH PER KG SOLDERING TIME (1) Sec. 5,37 2,69 1,75 1,33 1,07 0,89 25 30 40 60 80 100 (1) Soldering time is given only for information. It concerns a end of a cable submerged in a soldering bath at 390 °C. It is necessary to ensure that decomposition of enamel is total in the middle of the strand. Copper wire must be tinned and be brilliant neither enamel residue, nor waste of carbonization (see page 22). The range above can be realized from unit wires of different nominal cross sections. However, we recommend you to choose preferably in the list below: Diameters: 0,20 – 0,28 – 0,40 – 0,56 – 0,63 mm For bare copper wires, diameters on request. SORT OF WRAPPING Désignation Nomex tape 50 μ Kapton tape 25μ Polyester tape 23μ Mica tape Fiber glass tape thickness 200 μ (CETA VER) Classe de température Tension de claquage 180°C 220°C 130°C 250°C 300°C > 1 000 V eff. > 4 000 V eff. > 3 000 V eff. > 1 000 V eff. Suivant composition Standard covering: 30% mini, 50 % and more on request. Page 17 of 28 STRANDED WIRES ROLLED The shape of cross section into rectangular form reduces bulk of the cable. In case of power transformers the flat Litzwires enhance a lot the filling factor. For example, we realize a flat stranded wire: 300 x 0,200 – Cu SF1 – 5,6 x 3,5 – 2N This wire is manufacturing with 300 strands of 0,200 mm of diameter, in solderable enamelled copper, F Class, grade 1, rectangular section 5,6 mm x 3,5 mm and covered by 2 layers of nylon. We are at your disposal for every calculation of shaping. PRODUCTION’S PROGRAM LITZWIRES OR LITZCABLES ROUND OR RECTANGULAR RANGE OF PRODUCTION Unit wires: from 2 to 50 000 (or more). Insulation: • Enamelled copper wires grade 1 or grade 2 : F Class 155°C solderable F/H Class 175°C solderable H Class 180°C Brasable H+ Class 200°C Brasable • Bare copper wires • Tinned copper wires Constructions: strand, bunch or rope Cross sections: • Round: 0,080 to 200 mm² • Square or rectangular: 2,5 to 160 mm². Coverings: • Textile coverings: Silk, Nylon, Cotton, Tergal, Fiberglass and Polyester. • Wrapping: Nomex, Kapton, Polyester, Mica. Other solutions on request. Page 18 of 28 LITZWIRES INSULATED BY EXTRA SUPPLE EXTRUSION STRANDED WIRES INSULATED WITH TEFLON We produce Litzwires according to customer’s specifications, covered by white FEP extrusion (other colours on request). This FEP jacked is known as a thin wall due to his fine thickness (about 0,3 mm). These Litzwires work at a high temperature, they can be submerged on oil and it stays well supple. Possible range: diameter 0,65 mm to 20 mm maximum. To define this cable, we ask you for precising characteristics below: Cross section of copper in mm² Insulation’s voltage Breakdown voltage test (dielectric strength) Frequency Maxima overall diameter For example : 2600 x 0,100 CU SH1 – 1FEP Construction: It is a litzwire of 2600 strands from 0,100 mm of nominal diameter, in enamelled copper. Solderable H Class Grade 1, covered with one layer of FEP. Copper cross section: 17,5 mm² Maximal overall diameter: 8,5 mm Wall thickness: 0,5 mm Dielectric strength: 3KV Insulation: good resistance to mineral oils Using temperature: from -90°C to +205°C. STRANDED WIRES INSULATED WITH SILICONE This high-temperatured elastomer, with a thick layer, presents good electrical properties. Page 19 of 28 LITZWIRES INSULATED WITH POLYETHYLENE As they are covered, these strands present a good resistance to abrasion and are used for followings: Waterproof cables These wires can be submerged or buried to realize sensors. Temperature: from -10°C to +70 °C Possible range: diameter from 1mm to 10 mm maximum. Polyethylene insulation for Litzwires generates an important bulk but is still more economical than FEP. Our reference for this sort of cables is: 648 x 0,280 – Cu SF2 – 1PE This bunch is composed of 648 strands in diameter 0,280 mm, in solderable copper, F Class, grade 2, covered with one layer of extruded polyethylene. Page 20 of 28 TECHNICAL NOTE FOR THE TINING OF SOLDERABLE ENAMELLED COPPER STRANDED WIRES GRADE 1 OR 2 TEMPERATURE 155 °C OR 180 °C SOLDERING BATH: The tinning bath is prepared at a temperature of approximatly 400°C. Soldering temperature: Solderable wire F Class: 375°C ± 5% Solderable wire H Class: 390°C ± 5% At this temperature, the cable conductors for high frequency are tinned and soldered together (aubelow 370 °C, the enamel does not remove totally, and above 425°C,the enamel carbonizes on the wire). It is important to own a regulated enamel bath adjustable at 400 °C. To respect the new ROHS conformance, the bath has to be clean without lead, (even lead dust). The solder has to be mainly composed of tin (with eventually silver balance) but without lead. METHOD: 1) Wet the tinning part in a soldering flux. 2) Before the dip soldering, it is not necessary to remove the enamel nor the silk or nylon covering. 3) To stop the wick effect, surround two or three times the cable with a not-solderable twisted wire where the rising of the soldering is not wanted. 4) The time of tinning depends on the cross diameter, as noted in the table below, or on specifications edited by Le Guipage Moderne (LGM). TABLE OF IMMERSION TIME IN THE SOLDERING BATH: NOMINAL CROSS SECTION OF THE HIGH FREQUENCY STRANDED WIRE (mm²) From To 0,003 0,080 0,080 0,125 0,125 0,200 0,200 0,300 0,300 0,500 0,500 0,800 0,800 1,600 IMMERSION TIME Seconds 3 4 5 6 8 10 > 10* * to be determined by tests Page 21 of 28 TAKING OUT A COVERING FROM A TERMINAL CONDUCTOR: The welding of the wire or cable of Litz, in the barrel of a thimble, is carried out in the following way: After the enamel bath, insert quickly the tinned part (still hot) in a terminal conductor before hand put in the tool which will allow hot crimping. For each wire and according to the tinning equipment, the immersion should be as short as possible since a high temperature of the enamel bath surface, and an increase of copper are the most harmless effects. What is really to be avoided is the danger of the cross section decrease and the wire hammering, during a too long immersion in the bath. PREPARATION PROCEDURE BEFORE TINNING NOT-SOLDERABLE LITZ WIRES TEMPERATURE INDEX ≥ 180°C Enamel –H 200 °C For a wrapping with additional insulation as Kapton, Nomex, mineral fibers, first remove this insulation by a mechanical method. To take the enamel off: SEVERAL METHODS EXIST: 1) Mechanical action like scraping 2) With an acid solution. The problem of this process is the risk of oxidation if the operation is not properly done. 3) The enamel burning with a soft fire (gas stove or alcohol). When the enamel is burned and the wires are still red, dip quickly in an alcohol bath in order to remove oxidation. Page 22 of 28 WINDING INSTALLATION OF LITZ WIRE The Litz wire winding must be put on a reel with rotating a braking spindle in order to support o continuous traction on wire. This is essential to avoid the formation of loops and knots. BRAKING STATIC REEL TENSIOMETER REEL The static reel is inadvisable for Litzwire: it causes a formation of loops and knots. It is necessary to avoid braking by friction on wire. Nota: The Litzwire is twisted: it cannot withstand further twistings or detwistings. Page 23 of 28 TABLE OF AVAILABLE REELS We propose following reels but they can be modified on request. Reels type DIN 100 DIN 125 DIN JP3 DIN 160 DIN 200 DIN 250 DIN 355 DIN 500 d1 d2 d3 a mini. mm mm mm mm mm 100 125 130 160 200 250 355 500 63 80 80 100 125 160 224 315 16 16 20 22 36 36 36 36 0 0 0 0 0 0 0 0 100 125 110 160 200 200 200 250 Angle deg 30 30 30 30 30 30 L1 L2 m m 80 100 90 128 160 160 160 180 Weig ht g 90 200 215 350 600 1050 1850 7650 Average capacity in copper wire 1,00 kg 2,00 kg 3,00 kg 6,00 kg 10,00 kg 20,00 kg 48,00 kg Average capacity in Litz 0,50 kg 1,50 kg 4,50 kg 8,00 kg 14,00 kg 25,00 kg This table is given only for information, it has no contractual dimension. Page 24 of 28 STRUCTURE CROSS SECTION OVERALL DIAMETER G1 RESISTANCE Ohm/m Number Covering CU mm² Mini. Nomin. Maxi. Mini. 0,032 10 12 16 20 25 32 40 50 60 80 100 120 160 200 250 320 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 2. S 2. S 2. S 2. S 0,0082 0,0096 0,0129 0,0161 0,0201 0,0257 0,0322 0,0402 0,0483 0,0643 0,0804 0,0965 0,1287 0,1608 0,2011 0,2573 0,155 0,166 0,186 0,204 0,224 0,251 0,275 0,303 0,329 0,384 0,415 0,451 0,566 0,573 0,636 0,768 0,182 0,195 0,219 0,240 0,264 0,290 0,323 0,357 0,387 0,435 0,488 0,531 0,638 0,674 0,748 0,870 0,209 0,224 0,252 0,276 0,304 0,330 0,371 0,410 0,445 0,486 0,561 0,611 0,711 0,775 0,860 0,972 1,913 1,594 1,196 0,956 0,765 0,595 0,477 0,382 0,318 0,239 0,191 0,158 0,118 0,094 0,076 0,059 6 8 10 12 16 20 25 32 40 50 60 80 100 120 160 200 250 320 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 2. S 2. S 2. S 2. S 2. S 0,0075 0,0101 0,0126 0,0151 0,0201 0,0251 0,0314 0,0402 0,0503 0,0629 0,0754 0,1006 0,1257 0,1508 0,2011 0,2514 0,3142 0,4022 0,154 0,173 0,189 0,204 0,230 0,253 0,279 0,311 0,343 0,382 0,413 0,472 0,524 0,610 0,670 0,764 0,845 0,910 0,170 0,186 0,200 0,240 0,255 0,286 0,318 0,345 0,385 0,420 0,440 0,520 0,590 0,670 0,750 0,850 0,960 1,070 0,180 0,199 0,220 0,263 0,280 0,320 0,360 0,380 0,427 0,455 0,470 0,580 0,650 0,740 0,840 0,950 1,080 1,231 5 6 8 10 12 16 20 25 32 40 50 60 80 100 120 160 200 250 320 420 840 960 1020 3060 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 0,0098 0,0118 0,0157 0,0196 0,0236 0,0314 0,0393 0,0491 0,0628 0,0785 0,0982 0,1178 0,157 0,1963 0,2356 0,3141 0,3926 0,4908 0,6282 0,8047 1,6094 1,8393 1,9543 5,8629 0,150 0,180 0,210 0,224 0,268 0,304 0,310 0,350 0,392 0,440 0,490 0,497 0,621 0,710 0,780 0,880 0,990 1,100 1,210 1,390 1,910 2,050 2,147 3,690 0,170 0,190 0,228 0,250 0,282 0,313 0,330 0,370 0,430 0,480 0,530 0,540 0,680 0,745 0,830 0,940 1,075 1,180 1,310 1,490 2,210 2,300 2,420 4,010 0,187 0,201 0,246 0,270 0,297 0,322 0,361 0,398 0,460 0,510 0,569 0,620 0,740 0,840 0,890 0,970 1,160 1,265 1,390 1,620 2,265 2,469 2,543 4,328 LENGTH m/Kg TRACTION STRENGTH TINNING TIME Number Covering CU mm² Mini. 2,571 2,143 1,607 1,286 1,029 0,804 0,643 0,515 0,429 0,321 0,257 0,215 0,161 0,129 0,103 0,081 11059 9383 7199 5848 4720 3738 3018 2435 2040 1542 1241 1039 753 608 490 385 53 63 84 105 131 167 210 262 314 418 523 628 837 1045 1307 1673 3 3 3 3 3 3 3 3 3 3 4 4 5 5 6 6 2,735 2,052 1,641 1,368 1,026 0,821 0,656 0,513 0,410 0,328 0,274 0,205 0,164 0,137 0,103 0,082 0,066 0,052 11552 8907 7173 6054 4624 3743 3014 2379 1917 1618 1289 972 782 634 479 385 309 243 49 66 82 98 131 163 204 261 327 409 490 654 817 980 1307 1634 2042 2614 3 3 3 3 3 3 3 3 3 3 3 4 5 5 6 6 8 8 2,0880 1,7390 1,3050 1,0450 0,8700 0,6520 0,5220 0,4170 0,3260 0,2610 0,2090 0,1740 0,1310 0,1040 0,0870 0,0650 0,0520 0,0420 0,0330 0,0250 0,0120 0,0110 0,0100 0,035 9207 7753 5946 4778 4022 3061 2474 1989 1565 1259 1011 845 616 498 417 315 253 203 159 117,5 58,7 51,4 48,6 16,3 64 77 102 127 153 204 255 319 408 510 638 766 1020 1276 1531 2042 2552 3190 4083 5110 10210 11700 12400 37200 3 3 3 3 3 3 3 3 3 3 4 5 5 5 6 8 8 8 10 11 19 21 23 60 0,040 2,046 1,535 1,228 1,023 0,767 0,614 0,492 0384 0,307 0,246 0,205 0,154 0,123 0,103 0,077 0,061 0,049 0,038 0,050 1,5840 1,3210 0,9900 0,7920 0,6600 0,4950 0,3960 0,3170 0,2470 0,1980 0,1580 0,1320 0,0990 0,0790 0,0660 0,0490 0,0390 0,0320 0,0250 0,0190 0,0094 0,0083 0,0078 0,0026 Page 25 of 28 STRUCTURE Number Covering CROSS SECTION CU mm² OVERALL DIAMETER G1 RESISTANCE Ohm/m LENGTH m/Kg TRACTION STRENGTH TINNING TIME Mini. Mini. Number Covering CU mm² Mini. 1,6285 1,3028 1,0857 08145 0,6514 0,5428 0,4071 0,3257 0,2606 0,2036 0,1628 0,1303 0,1086 0,0814 0,0652 0,0528 0,0543 0,0326 0,0261 0,0204 0,0116 7454 6044 5082 3875 3112 2614 1983 1597 1281 1008 779 628 526 398 321 269 202 162 130 102 59 81 101 122 162 203 243 324 405 506 648 811 1013 1216 1621 2026 2431 3242 4052 5065 6481 11340 3 3 3 3 3 3 3 3 3 4 5 5 5 6 8 8 10 10 10 10 11 1,6547 1,241 0,9928 0,8273 0,6205 0,4964 0,4137 0,3103 0,2482 0,1986 0,1551 0,1241 0,0993 0,0827 0,0621 0,0496 0,0414 0,031 0,0248 0,0199 0,0155 0,012 0,0077 0,0067 0,0099 0,0136 0,0313 7768,6 5967,8 4826,2 4051,3 2982,5 2478,4 2080,9 1573,6 1266,4 1015 768,8 619,6 499,4 418,1 316 254 212,3 160 128,3 103 80,5 61,6 39,6 34,9 24,8 17,7 7,7 77 103 129 155 206 257 309 411 515 644 824 1030 1287 1544 2059 2573 3088 4118 5147 6434 8235 8350 12970 14820 21818 30010 69159 3 3 3 3 3 3 3 3 3 4 5 5 5 6 8 8 8 10 10 12 12 19 28 31 31 32 32 Nomin. 4 5 6 8 10 12 16 20 25 32 40 50 60 80 100 120 160 200 250 320 560 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 0,0125 0,0156 0,0187 0,0249 0,0312 0,0374 0,0499 0,0623 0,0779 0,0997 0,1247 0,1558 0,187 0,2494 0,3117 0,374 0,4987 0,6234 0,7793 0,9974 1,7469 0,180 0,220 0,240 0,260 0,290 0,310 0,350 0,390 0,430 0,500 0,560 0,063 0,690 0,079 0,870 0,960 1,100 1,240 1,370 1,550 2,170 0,222 0,242 0,270 0,295 0,325 0,351 0,398 0,440 0,487 0,545 0,649 0,715 0,774 0,880 0,973 1,057 1,250 1,400 1,550 1,730 2,290 3 4 5 6 8 10 12 16 20 25 32 40 50 60 80 100 120 160 200 250 320 405 630 720 1060 1458 3360 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 2. S 0,0119 0,0158 0,0198 0,0238 0,0317 0,0396 0,0475 0,0633 0,0792 0,099 0,1267 0,1584 0,198 0,2376 0,3167 0,3959 0,4751 0,6335 0,7918 0,9898 1,2669 0,6033 2,2942 2,8505 4,1958 5,7723 6,5691 0,188 0,210 0,230 0,240 0,280 0,310 0,335 0,375 0,420 0,460 0,510 0,600 0,670 0,740 0,840 0,930 0,980 1,100 1,290 1,400 1,480 1,800 2,200 2,300 2,800 3,350 4,800 0,220 0,240 0,265 0,285 0,32 0,360 0,385 0,440 0,485 0,540 0,630 0,700 0,770 0,840 0,96 1,060 1,160 1,320 1,470 1,660 1,880 2,097 2,460 2,630 3,490 4,000 5,330 Maxi. 0,063 0,240 1,2612 0,263 1,0090 0,283 0,8408 0,320 0,6306 0,353 0,5045 0,382 0,4204 0,434 0,3153 0,480 0,2523 0,532 0,2018 0,597 0,1576 0,705 0,1261 0,778 0,1009 0,844 0,0841 0,960 0,0631 1,063 0,0505 1,156 0,0420 1,321 0,0315 1,466 0,0252 1,630 0,0202 1,830 0,0157 2,392 0,0090 0,071 0,240 1,3283 0,260 0,9962 0,290 0,797 0,315 0,6642 0,355 0,4981 0,380 0,3985 0,425 0,3321 0,480 0,2491 0,530 0,1192 0,590 0,1594 0,690 0,1245 0,760 0,0996 0,845 0,0797 0,920 0,0664 1,050 0,0498 1,160 0,0398 1,260 0,0332 1,440 0,0249 1,600 0,0199 1,800 0,0159 2,040 0,0124 2,250 0,0099 2,640 0,0063 2,810 0,0055 3,580 0,0081 4,110 0,0111 5,860 0,0256 Page 26 of 28 STRUCTURE CROSS SECTION OVERALL DIAMETER G1 RESISTANCE Ohm/m LENGTH m/Kg TRACTION STRENGTH TINNING TIME Mini. Number Covering CU mm² Mini. 0,100 204,1 170,1 127,6 102,1 81,64 63,78 51,02 40,82 34,017 25,512 20,41 15,945 12,756 10,205 8,164 6,378 5,669 5,315 5,103 3,908 3,136 2,377 1,594 239,6 199,7 149,7 119,8 95,81 77,12 61,7 49,36 41,131 30,848 24,679 19,28 15,424 12,339 9,871 7,712 6,855 6,427 6,17 4,725 3,791 2,873 1,927 1274 1066 805,6 647 519 407,4 319,2 256,6 214,4 161,4 129,5 101,6 81,5 65,39 52,5 41,06 36,51 34,26 32,89 25,2 20,3 15,4 10,3 0,51 0,612 0,817 1,021 1,277 1,633 2,042 2,552 3,063 4,084 5,105 6,532 8,168 10,21 12,763 16,336 18,378 19,603 20,42 26,55 33,1 43,65 65,1 3 4 5 5 5 6 7 8 8 9 10 11 12 14 15 17 18 18 19 23 26 32 45 0,200 176,07 132,05 105,64 88,03 75,457 66,025 52,82 44,017 35,213 33,013 29,344 26,41 21,128 16,506 13,205 10,564 8,803 6,603 5,869 5,282 0,953 194 145,5 116,4 97 83,14 72,75 58,2 48,5 38,8 36,38 32,33 29,1 23,28 18,73 14,99 11,99 9,99 7,49 6,66 5,99 1,028 1089,3 823,2 661,2 551,5 473,6 416,4 326,2 273,1 219,1 205,6 182,9 165 132,4 103,8 83,3 66,8 55,8 42 37,3 33,6 6,04 0,613 0,817 1,021 1,225 1,43 1,634 2,042 2,45 3,063 3,267 3,676 4,084 5,105 6,534 8,168 10,21 12,252 16,336 18,378 20,42 135,85 4 5 5 5 6 6 7 8 8 8 9 9 10 11 12 14 15 17 18 19 30 Number Covering CU mm² Mini. Nomin. Maxi. 10 12 16 20 25 32 40 50 60 80 100 128 160 200 250 320 360 384 400 520 648 855 1275 3360 1. N 1. N 1. N 1. N 1. N 1. N 1. N 1. N 1. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 0,0785 0,0942 0,1257 0,1571 0,1964 0,2513 0,3142 0,3927 0,4712 0,6283 0,7854 1,0053 1,2566 1,5708 1,9635 2,5133 2,8274 3,0159 3,1416 4,084 5,0893 6,7151 10,0138 0,380 0,430 0,480 0,560 0,600 0,710 0,780 0,880 0,960 1,100 1,260 1,400 1,580 1,700 1,950 2,200 2,300 2,400 2,450 2,700 3,100 3,550 4,320 6,800 0,500 0,550 0,620 0,690 0,760 0,850 0,940 1,050 1,150 1,300 1,470 1,670 1,900 2,150 2,370 2,700 2,900 3,000 3,070 3,200 3,470 4,010 5,300 7,900 0,550 0,590 0,670 0,740 0,820 0,920 1,020 1,140 1,250 1,420 1,580 1,790 2,020 2,280 2,530 2,880 3,080 3,200 3,280 3,400 3,710 4,220 5,600 8,100 3 4 5 6 7 8 10 12 15 16 18 20 25 32 40 50 60 80 90 100 550 1. N 1. N 1. N 1. N 1. N 1. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 0,0942 0,1257 0,1571 0,1885 0,2199 0,2513 0,3142 0,377 0,4712 0,5027 0,5655 0,6283 0,7854 1,0053 1,2566 1,5708 1,885 2,5133 2,8274 3,1416 17,292 0,430 0,500 0,560 0,610 0,650 0,700 0,780 0,850 0,950 0,980 1,030 1,090 1,250 1,400 1,500 1,700 1,900 2,180 2,310 2,400 5,600 0,470 0,600 0,700 0,780 0,850 0,900 1,000 1,100 1,200 1,220 1,230 1,240 1,450 1,610 1,700 1,940 2,180 2,480 2,60 2,740 6,400 0,510 0,650 0,760 0,840 0,920 0,980 1,090 1,200 1,340 1,400 1,420 1,450 1,660 1,820 2,040 2,180 2,460 2,780 2,930 3,080 7,210 Page 27 of 28 STRUCTURE Number Covering CROSS SECTION CU mm² OVERALL DIAMETER G1 Mini. Nomin. Maxi. RESISTANCE Ohm/m LENGTH m/Kg TRACTION STRENGTH TINNING TIME Mini. Number Covering CU mm² Mini. 36,338 29,07 24,229 19,38 18,169 14,535 11,628 9,084 8,075 7,268 5,814 4,845 4,038 3,589 2,907 2,422 2,307 2,019 1,794 1,615 1,604 1,268 0,855 0,76 0,57 0,326 0,228 214,6 171,7 143 114,5 107,3 85,8 68,67 53,65 47,69 42,92 34,34 28,61 28,85 21,2 17,17 14,31 13,63 11,92 10,6 9,54 8,9 7,1 4,75 4,22 3,17 1,82 1,28 3,2 4 4,8 6 6,4 8 10 12,8 14,4 16 20 24 28,8 32,4 40 48 50,4 57,6 64,8 72 62,2 78,8 116,6 131,2 175 306,2 437,4 8 9 9 10 10 11 12 13 13 14 15 16 17 19 20 22 23 24 25 26 28 30 60 60 80 100 120 4,45 2,80 2,10 1,58 26,65 16,8 12,6 9,5 31,76 50,45 67,27 89,7 16 20 23 26 28,14 14,07 7,04 3,52 1,83 0,56 167,00 83,50 41,75 20,87 10,85 3,34 4,73 9,46 18,92 37,84 72,84 236,50 9 11 14 19 24 75 3,12 17,15 37,22 18 0,280 8 10 12 15 16 20 25 32 36 40 50 60 72 81 100 120 126 144 162 180 192 243 360 405 540 945 1350 1. N 1. N 1. N 1. N 1. N 1. N 1. N 1. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2. N 2 NM 2 NM 2 NM 2 NM 2 NM 2 NM 0,493 0,616 0,739 0,924 0,985 1,232 1,54 1,97 2,217 2,463 3,079 3,695 4,433 4,988 6,158 7,389 7,758 8,867 9,975 11,084 11,8224 14,9627 22,167 24,9378 33,2505 58,18883 83,1262 0,900 1,000 1,100 1,250 1,310 1,480 1,610 1,820 2,040 2,110 2,380 2,580 2,810 3,030 3,280 3,670 3,750 4,010 4,250 4,600 4,800 5,500 6,700 7,570 8,730 11,530 13,760 1,21 1,33 1,45 1,645 1,71 1,9 2,14 2,4 2,55 2,7 3 3,2 3,5 3,75 4,2 4,58 4,7 5 5,3 5,6 5,58 6,36 7,65 8,43 10 13,4 14,54 1,3 1,42 1,56 1,77 1,83 2,02 2,27 2,55 2,71 2,86 3,18 3,4 3,71 3,98 4,46 4,86 4,99 5,3 5,62 5,94 5,71 6,51 7,82 8,63 10,3 13,7 16,35 51 81 108 144 2. N 2. N 2. N 2. N 3,9745 6,3124 8,4165 11,222 3,060 3,700 4,200 4,900 3,28 4,07 4,75 5,47 3,35 4,17 4,9 5,6 5 10 20 40 77 250 2. N 2. N 2. N 2. N 2. N 2. N 0,6288 1,2576 2,5152 5,0304 9,6835 31,44 1,100 1,510 2,150 2,900 4,140 7,900 1,33 1,84 2,56 3,58 4,93 8,80 1,36 1,88 2,62 3,66 5,10 8,99 23 2. N 5,6649 3,120 3,72 3,8 33,725 26,98 22,483 17,987 16,863 13,49 10,792 8,431 7,494 6,745 5,396 4,497 3,747 3,331 2,698 2,248 2,141 1,874 1,665 1,499 1,427 1,127 0,761 0,676 0,507 0,289 0,202 0,315 4,15 2,61 1,96 1,47 0,400 26,32 13,16 6,58 3,29 1,71 0,53 0,560 2,92 Page 28 of 28
© Copyright 2025