Dynamique d’une chaˆıne d’aimants Application ` a la r´ ecup´ eration d’´ energie M. Ducceschi(a) , C. Rouby(a) , L. Bodelot(b) (a) UME - ENSTA ParisTech (b) LMS - Polytechnique RFM, Fontainebleau 12 - 05 - 2015 M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 1 / 37 Energy Harvesting Aim: to harvest the energy of a fluid flow Dynamical instability leads to activation of mechanical modes of a structure Electricity may be produced by coupling with a circuit (electromagnetic induction) Figure: Elastic magnet in a fluid flow coupled with coil. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 2 / 37 Works at UME Piezoelectricity Magnetic Dipoles [J. Lee, J. Boisson, C. Rouby] [O. Doar´ e, S. Michelin (LadHyx)] M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 3 / 37 Works at LMS Magnetised Elastomer [L. Bodelot] M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 4 / 37 Many people are working on this challenging problem! Me: Modelling the equations of motion of a magnetic patch Postdoc: Coup de Pouce F2M 2013, encadr´ e par Corinne Rouby et Laurence Bodelot M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 5 / 37 Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 6 / 37 Continuum Patch: Complex Problem Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 7 / 37 Continuum Patch: Complex Problem Energy Of A Magnetic Patch Magnetisation Field in the deformed configuration M is not uniform (a) calculating the total magnetic energy for a deformed configuration is complex M New idea (after a few months) work with chain of rectangular magnets take a limit of infinite degrees of freedom at the end (b) M On fait par morceaux! Figure: (a): Undeformed configuration. (b): Deformed configuration. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 8 / 37 Discrete Rectangular Magnets Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 9 / 37 Discrete Rectangular Magnets Rectangular Magnet With Uniform Magnetisation Specifications dimensions: 2Lx , 2Ly , 2h ˆ magnetisation : M0 z volume specified by the vector r0 z r To do 2Lx 2Ly 2h x O r0 1 Determine the magnetic field created by the magnet at a location r 2 Determine the energy of interaction between two magnets M = M0zˆ y M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 10 / 37 Discrete Rectangular Magnets Rectangular Magnet With Uniform Magnetisation Tricks 1 Absence of macroscopic currents allows the definition of a scalar potential Φ(r). Magnetic field: H(r) = −∇Φ 2 Uniform magnetisation allows clever manipulations of the divergence theorem In the end the scalar potential for the magnet on the left reads "I # I 0 0 dSup dSlow M0 − Φ(r) = 0 0 4π |r − r0 | |r − r0 | Sup Slow M = M0zˆ Figure: Uniformly magnetised rectangular magnet. Surface integrals! Upper and lower surfaces: sheets of ”magnetic charge”. This looks simple ... But what happens when the magnets is rotated and displaced from the origin? M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 11 / 37 Discrete Rectangular Magnets Energy of Interaction Two interacting magnets z O x θj rup j θi rup i rlow i Oi µ0 2 I Sj µ0 Φi (Mj · nj ) dSj + 2 rlow j Oj Etot ≡ Eij + Eji = I Φj (Mi · ni ) dSi Si Explicit form of such expression is impossible analytically M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 12 / 37 Discrete Rectangular Magnets Energy of Interaction So far we have seen Mutual energy is expressed as a double surface integral! (difficult) A solution for the potential is needed Therefore: we need to approximate the energy integrals! M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 13 / 37 Calculating the Energy Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 14 / 37 Calculating the Energy Multipole Expansion Approximation 1: Multipole Expansion Expansion formula Given the Legendre polynomials Pn one may write a multipole expansion for the potential Φ(r) = I ∞ 1 X 1 r · r0 0 n (r ) P M · n0 dS 0 n 4π n=0 rn+1 S 0 r · r0 Expansion depends on reference frame Accuracy increases with n For spherical geometry, n = 2 (dipole) is exact solution, but what about the present rectangular geometry? Figure: Angular plots of poles (figurative example). M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 15 / 37 Calculating the Energy Multipole Expansion Approximation 1: Multipole Expansion Calculation by hand Expansion up to n = 5 4π Φ(r) = M0 L2 8hLx Ly z 12hLx Ly z L2 20hLx Ly z 2 2 y 2 2 2 2 2 x + x Lx + y Ly + z h − +h + r3 r5 3 3 r7 + Lx Ly hz 4 2 2 2 2 4 2 2 4 9Lx + 10Lx Ly + 30Lx h + 9Ly + 30Ly h + 45h 3r 7 − + 14Lx Ly hz 4 2 2 2 2 2 2 2 2 2 2 9Lx x + 5Lx Ly x + 5Lx Ly y + 15Lx h x 3r 9 2 2 2 4 2 2 2 2 2 2 2 4 2 +5Lx h z + 9Ly y + 15Ly h y + 5Ly h z + 15h z 21Lx Ly hz 4 4 2 2 2 2 2 2 2 2 4 4 2 2 2 2 4 4 3Lx x + 10Lx Ly x y + 10Lx h x z + 3Ly y + 10Ly h y z + 3h z + ... r 11 M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 16 / 37 Calculating the Energy Multipole Expansion Multipole Expansion Test: close magnets (a) Figure: Two magnets, close configuration. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 17 / 37 Calculating the Energy Multipole Expansion Multipole Expansion Test: close magnets 4π/M0 Φ ·10−3 1 0.5 [m] 2 3 4 ·10−2 (a) (b) Figure: Two magnets, close configuration. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 18 / 37 Calculating the Energy Multipole Expansion Multipole Expansion Test: close magnets 4π/M0 Φ ·10−3 1 0.5 [m] 2 3 4 ·10−2 (a) (b) (c) Figure: Two magnets, close configuration. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 19 / 37 Calculating the Energy Multipole Expansion Multipole Expansion Test: far magnets 4π/M0 Φ ·10−4 3 2 1 [m] 3 4 ·10−2 (a) (b) (c) Figure: Two magnets, far configuration. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 20 / 37 Calculating the Energy Multipole Expansion So far we have seen Multipole expansion calculated up to n=5 When magnets are close results are quite bad! Therefore: integrals need to be calculated otherwise! M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 21 / 37 Calculating the Energy Simpson 2D Rule Approximation 2: Simpson’s Rule Function approximation Simpson’s 2D rule The integral I I Eij = Si Sj dSi dSj |rj − ri | can be approximated by " I = Simpson2D # 1 Simpson2D − r rj ∆yi ,∆yj i ∆x ,∆x i j Figure: Bar approximation of continuous 2D function. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 22 / 37 Calculating the Energy Simpson 2D Rule Algorithm For Simpson 2D | (xj,− , xi,− ) • • • • • ··· ··· . . . • (xj,+ , xi,− ) . . . • • . . . • • . • • 1 4 2 . . . 2 4 1 | (xj,− , xi,+ ) • . . . . . . . ··· • • ··· • (xj,+ , xi,+ ) {z } Discrete input grid for integrand evaluation . ≡ FI Given 4 16 8 2 8 4 . . . 8 16 4 . . . 4 8 2 ··· ··· ··· 2 8 4 . . . . . . ··· 4 ··· 8 ··· 2 {z Matrix of weights 4 16 8 . . . 8 16 4 1 4 2 . . . 2 4 1 } ≡ W2D eT 1, ..., 1) N = (1, | {z } N times ◦ = Hadamard product 1 Simpson2D up up rj − ri = ∆xj ∆xi T eNx (W2D ◦ FI ) eNxi j 9 ∆xi ,∆xj M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 23 / 37 Calculating the Energy Simpson 2D Rule Algorithm For Simpson 2D For this method to be useful | (xj,− , xi,− ) • • • • • ··· ··· • • (xj,− , xi,+ ) • 1 . . . • (xj,+ , xi,− ) . . . • • . . . • • . . . . • • . . . • (xj,+ , xi,+ ) Matrix FI must be filled up symbolically not numerically! 2 Algorithm must return a symbolic expression for Eij , even though the solution is approximated . . ··· ··· {z Discrete input grid for integrand evaluation } Software to accomplish this ≡ FI Matlab Mathematica Maxima .... M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 24 / 37 Calculating the Energy Simpson 2D Rule Simpson 2D Test Plots Numeric Test f (x, y) = sin(πx) sin(πy); (x, y) ∈ [0, 1] × [0, 1] R 1. S f (x, y) dx dy = 4/π 2 ≈ 0.4053 2. Simpson2D [f (x, y)]∆x,∆y = 0.4071 error ≈ 0.5% with very few domain subdivisions! Simpson 2D very accurate method for double integrals Figure: Top: f (x, y) = sin(πx) sin(πy). Bottom: Simpson 2D mesh with 4×4 subdivisions. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 25 / 37 Calculating the Energy Simpson 2D Rule So far we have seen Eij can be calculated semi-analytically using symbolic Simpson 2D Ready to set up Lagrange equations! M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 26 / 37 Lagrange Equations Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 27 / 37 Lagrange Equations Lagrange Equations Clamped-Free Chain M zˆ O x ˆ Constrained Equations g M (xO1 , zO1 ) −θ2 (xO2 , zO2 ) M (xO3 , zO3 ) θ3 Degrees of freedom = number of magnets Angles θi most natural choice for describing the system BUT Eij is written in terms of xO i , z O i , θ i L=T −V N X b 2 I 2 2 T = x˙ O + z˙O + θ˙i i i 2 2 i=1 N N X X V = Eij − b xOi g ∂L d ∂L − = dt ∂ ˙ i ∂i i=1 j=1 NC Xz Cx X ∂gk ∂fk λk + µk ∂i ∂i k=1 k=1 N T = [θ, xO , zO ] Constraint equations fi = xOi − L 2 i−1 X cos θj + cos θi = 0 j=1 gi = zOi − L 2 i−1 X sin θj + sin θi = 0 j=1 M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 28 / 37 Lagrange Equations Linearised Equations Quadratic form for energy Linearised Equations N X ∂Eij Eij = Eij + m + ∂m 0 0 m=1 1 2 N X N X m=1 n=1 ¨ + Kθ = 0 Bθ Eigenvalue Equation! 2 ∂ Eij m n + ∂ m ∂n 0 N X N X N X O(p q r ) p=1 q=1 r=1 We can do this because Eij is known semi-analytically M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 29 / 37 Lagrange Equations Eigenmodes Eigenmodes Plots Figure: Eigenmodes for a chain of N = 5 magnets. First mode at zero frequency not shown. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 30 / 37 Preliminary Validation of Model Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 31 / 37 Preliminary Validation of Model Experimental Setup (a) (b) (c) Figure: (a) Rectangular magnets without cover. (b) Rectangular magnets with cover (top view). (c) Rectangular magnets with cover (flat view) (d) (e) Figure: (d) High Speed Camera. (e) Tracking framework in Matlab. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 32 / 37 Preliminary Validation of Model Experimental Results (preliminary) Two chains with different separation distances: bc, sc Two configurations: with gravity / without gravity bc2 sc2 bc2 sc2 model (Hz) data (Hz) 3.6 4.5 1.9 3.2 3.4 4.2 1.9 2.9 +g +g no g no g More experiments at ENSTA right now .... M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 33 / 37 Conclusion and Perspectives Contents 1 Continuum Patch: Complex Problem 2 Discrete Rectangular Magnets Energy of Interaction 3 Calculating the Energy Multipole Expansion Simpson 2D Rule 4 Lagrange Equations Eigenmodes 5 Preliminary Validation of Model 6 Conclusion and Perspectives M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 34 / 37 Conclusion and Perspectives Conclusions Chain of magnets: solved! However, many more results are needed! .... M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 35 / 37 Conclusion and Perspectives Perspectives Elastic Magnetic Flag Limit of infinite DoF Figure: System composed of: elastic magnetic flag (produced at LMS) and coils Figure: Eigenfunctions of chain of magnets in the limit of infinite degrees of freedom. M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 36 / 37 Conclusion and Perspectives Perspectives Passage discrete/continuum could give useful results System need to be coupled with: coil AND fluid Nonlinearities need to be addressed (so far model is linear) M. Ducceschi Dynamique d’une chaˆ ıne d’aimants 12 - 05 - 2015 37 / 37
© Copyright 2024