CODE # JEE-2015 : Advanced Paper – 1 Answers and Explanations Physics Chemistry 1 2 11 A,C 21 8 31 A 41 8 51 A,D,C 2 7 12 B,C 22 4 32 B,D 42 5 52 C,D 3 2 13 A,C 23 4 33 A 43 2 53 B,C 4 3 14 B,D 24 3 34 D 44 0 54 B,D 5 3 15 D 25 4 35 A 45 4 55 A,B 6 7 16 C 26 1 36 C 46 3 56 A,D 7 6 17 B 27 2 37 A,B,C 47 8 57 A,C 8 2 18 A,B,C 28 9 38 B,C,D 48 4 58 B,C 9 A,B,D 19 See Sol. 29 A,C,D 39 See Sol. 49 A,D 59 See Sol. 10 B 20 See Sol. 30 C 40 See Sol. 50 A,B,C 60 See Sol. PART - I : PHYSICS 1. 2 ⇒ g 4 ⇒h=R If g = v= GM R ( ) 3 m v 22 − v12 = mg(3) 4 ⇒ v 22 − v12 = 40 v 22 = 40 + 9 = 49 v2 = 7 m/s. 1 GMm GMm − mv 2 − = 2 R 2R 2. 7 Mathematics 3. 2 P ∝ R2 T4 PA = 104 PB ∴ vesc = v 2. R A .TA = 10 4 RB TB4 For a disc rolling without slipping R TA = 10 × B TB Ra 2 4 2 1/ 2 2 1 1 MR2 v mv 2 + ⋅ = K ⋅E 2 2 2 R 1/ 2 TA 1 = 10 × TB 400 3 mv 2 = K ⋅ E 4 Now, ⇒ = 1 2 Now according to wien’s law λ A TB = =2 λB TA 3 3 mv12 + mg(30) = mv 22 + mg(27) 4 4 ... 1 ... 4. 3 5. 3 Fuel available ∝ power initial power = 8 × Required power ∴ after 3 half lives, the power output will become ≤ power required ∴n=3 M2 14 = = 7. M1 2 7. 6 30° 30° Ö3a/2 For wave traveling in water the equivalent distance is µ times the geometrical ∴ For maxima a/2 The flux passing through the plane is 1/6th of the total flux emitted by the wire. λL ∴ φ = 6∈ 0 n = 6. µ d2 + x 2 − d2 + x 2 = mλ d2 + x2 (µ − 1) = mλ ∴ d2 + x2 = 9 m2 λ2 x2 = 32 m2 λ2 – d2 Hence, P = 3 6. 7 8. 2 For air as medium Mirror hc −φ =E λ φ= 1 1 1 + = v u f f = 10, u = 15 v = 30 cm |m1| = 2 For lens 1242 − 10.4 = 3.4 90 13.6 = 3.4 n2 n = 2. 9. A, B, D One mole of H2 + one mole of helium. at temp T 1 1 1 − = v u f f = +10 u = –20 m2 = 1 Total magnification m1m2 = M1 = 2 For medium as µ = 7/6 No change for mirror but for the lens U= 1× C v1 × T + 1× C v 2 × T 3 / 2RT + 5 / 2RT = 2 2 8 RT = 2RT 4 (A) is correct = 1 3×6 = − 1 (x ) f ′ 2 × 7 g … (i) 1 3 = − 1 (x ) f 2 g … (ii) (B) → In gas mixture v = C P1 + CP2 γ RT M 5 + 7 12 4 × 3 3 = = = = . v= C C v1 + v 2 3 + 5 8 4 × 2 2 From (i) and (ii) 35 cm 2 for lens u = –20 cm f′ = M= +35 cm 2 ∴ v = 140 cm f= 140 =7 20 M2 = 2 × 7 = 14 | m |= ... 2 ... 1× 2 + 1× 4 =3 1+ 1 vmix = 3 RT 2×3 vHe = 5RT 3×4 1 cm vmix 3 RT × 3 × 4 6 = = vHe 2 × 3 × 5RT 5 (B) is correct (C) vrms = 8RT 8RT 8RT , vHe = , vH2 = µM µ4 µ24 vHe 8RT × π × 2 = = vH µ × 4 × 8RT 2 each division of main scale = 5 division of vc = 4div of main scale 1 2 1 1 5 × (distance of vc) = 4 × cm = cm 2 8 ∴ (D) is correct 10. B R1 = = = 1 (distance of vc) = cm . 10 ∴ L.C = 0.125 – 0.10 cm = 0.025 cm Option A: pitch = 2 × 0.025 = 0.050 cm 2.7 × 10−8 × 50 × 10−3 (72 − 4) × 10−6 2.7 × 50 × 10−8 × 10−3 45 × 10−6 = 2.7 × 50 × 10−5 45 0.050cm = 0.0005cm = 0.005 mm 100 ∴ Option B is correct least count of linear scale = 0.050 cm distance of pitch = 0.100 cm ∴ LC = 27 × 5 × 10−5 27 × 5 × 10−5 = = 3 × 10−5 9 9 R2 = 1 cm 8 1× 107 × 50 × 10−3 0.100 = 0.001cm = 0.01mm 100 ∴ Option C is correct. ∴ L.C = 4 × 10−6 250 × 10−5 12.5 × 10–4 = 2 ∴ equvialant resistance R1R2 (3 × 250 / 2) × 10−5 × 10−5 = = R +R (3 + 250 / 2) × 10−5 1 2 13. A, C h = ML2T–1 c = LT–1 FL2 = [M−1L3 T −2 ] M2 solving we get G= 750 −5 7500 −6 1875µΩ = × 10 = 256 × 10 = 256 64 a= 11. A, C hv = ev0 + φ −1 1 1 ,c= ,b= 2 2 2 1 1 −1 ∴ M = kh 2 .c 2 .G 2 option (A) is correct. Similarly if L = kha.cb.Gc = [ML2T–1]a[LT–1]b[M–1L3T–2]c a–c=0 2a + b + 3c = 1 a + b + 2c = 0 hc = ev 0 + φ λ hc −φ λ 1 graph of vs v0 will be a st line (option C) λ v0 vs λ will be a decreasing curve option (A) ev0 = solving we get a = 12. B, C 1 cm main scale is divided in 8 equal divisions. screw gauge 100 divisions on circular scale 5 division of vc = 4 division on main scale. 1 1 −3 −3 1 1 ,c = ,b = 2 2 2 ∴ L = kh 2 .c 2 .G 2 ∴ Option C is correct. ... 3 ... 14. B, D 17. B 1 E1 = m(aω1 )2 2 b = maω1 1 E2 = m(Rω2 )2 2 a 1 2 = =n b mω1 E1 a2 ω1 = E2 R2 ω2 s2 d for light rays to become parallel on the 2nd refracting surface. 1.5 1 1.5 − 1 − = ∞ u 10 R = m(Rω2) −10 = −20 cm +0.5 ∴ Image of P is 20 cm away from refrating surface s 2. 1 1.5 1 − 1.5 = Image P will be formed at + −10 v 50 ∴ u= 1 = 1 , mω = 1 2 mω2 a (mω2 ) = = n2 b (mω1 ) ω1 =ω 2 E1 E2 = ω1 ω2 ∴ 1 1 1.5 = − v 20 50 ∴ u 50 − 30 = v 1000 1000 = 50 20 ∴ d = 50 + 20 = 70 cm ∴ v= 15. D, C Angular momentum will remain conserved. Initial angular momentum = MR2w 18. A, B, C Magnitude of force is proportional to the length of the wire between the 2 ends in a uniform magnetic field. ∴ (A) is correct, (B) is correct, (C) is correct 2 M 3 M 8 MR2 w = MR2 + × R + × x 2 w × 8 5 8 9 9 x2 8 R2 = R2 + R2 + × 8 × 25 8 9 ∴ – 20 S oc 2 n2 × 1 1 E1 a2m2 ω2 = 2 2 2 = 4 = 2 E2 R m ω2 n n 1 – Su 19. 9R2 9 x2 R2 = − R2 − 8 8 × 25 8 1 9 2 x2 1 − R = 8 25 8 20. (A) A B C D → → → → R, T P, T, S Q, T, R P, Q, R P, Q, R, T U x2 U1 (x) = 0 1 − 2 2 a 16 2 R ∴ x = 25 2 4 ∴ x = 5 R 2 x 2 2x dU1(x) −U0 = × 2 × 1 − 2 × 2 dx 2 a a 16. C +q charge will more in SHM, –q charge will more along direction of its displacement because it will experience a net attractive force towards one of the wire. ... 4 ... U0 4x x 2 2U0 x x 2 F = 2 × a2 1 − a2 = a2 1 − a2 at x = 0, x = a, x = – a, F=0 F=0 F=0 for x > 0, F > 0 ∴ force will be away from equibrium If x = – a, F = 0, U = 0 at x = 0, U = U0 U0 1 −1 + = − 2 3 3 x > – a, F4 (x) = – ve, x < – a, F4 (x) = + ve ∴ Particle oscillate about x = – a, where its potential energy. = U0 2 U0 4 it will never reach origin, oscillate about x = – a, because at x = – a, it is at equilibrium & force is restoring. Since the energy of particle is PART - II : CHEMISTRY 21. 8 =N –N 2 (B) (C) U0 x U 2x ,F2 (x) = – 0 × 2 2 a 2 a ∴ x = 0, F2 (x) = 0, particle will oscillate about origin Q (Q), & (S) U2 (x) − 22. 4 Fe3 + + 6SCN− →[Fe(SCN)6 ]3 − Fe3 + + 6CN− →[Fe(CN)6 ]3 − Spin only magnetic moment = PQRS For [Fe(SCN)6 ]3 − , No. of unpaired electrons 2 2 U 2x U x2 2x 2 2 F3 − 0 × 2 × e − x / a + 0 × 2 × + 2 e − x / a 2 2 a a a F3 = – = U0 − x2 / a2 x 2 e x 1 − 2 2a2 a F4 (x) = U0 2 1(1 + 2) = 3 = 1.732 Difference = 6 – 1.73 ; 4.27 ; 4 23. 4 BeCl2, N2O, NO2+ , N3− 24. 3 25. 4 M+ → M3 + + 2e− ∆G° = −nFE° ∆G° = −2 × 96500 × − 0.25 = 48250 J = 48.25 kJ 193 =4 So, no. of moles of M+ oxidized = 48.25 1 3x 2 − 3 a 3a U0 x 2 1 − 2a a2 x = 0, x = a, x = – a, 35 ; 6 = P, R, T F4 (x) = − 5(5 + 2) = For [Fe(CN)6 ]3 − , No. of unpaired electrons x = 0, F3 = 0 x = a, F3 = 0 x = – a, F3 = 0 Since Fα – x, ∴ particle experience as an attractive force towards x = 0. at x = – a, U ≠ 0, ∴ particle will not oscillate about x = – a. (D) n(n + 2) B.M. 26. 1 As So, F4 = 0 F4 = 0 F4 ≠ 0 Now, ∆Tf = T° – T ∆Tf = 0 – (– 0.0558) = 0.0558 m = 0.01 Kf = 1.86 ∆Tf = iKfm 0.0558 =3 1.86 × 0.01 So formula is [Co(NH3)5Cl]Cl2 for x > 0, F(x) = –ve for x < 0, F(x) = –ve ∴ force is not always towards x = 0. i= 3 U0 1 −a x a,U 1 = − = − − × at 2 3 a ... 5 ... 38. B, C, D In electrolysis process to obtain copper, impure copper is made anode while pure copper is made cathode using CuSO4 solution. 27. 2 Two chiral center So stereoisomers = 21 = 2 28. 9 29. A, C, D 39. Fe3 + + H2 O2 + OH− → Fe 2 + + H+ + O 2 + H2 O 30. C As the reaction is exothermic. So increase of temperature yields in less production of NH3. 31. A In CCP arrangement O2– = 4 So no. of Al3+ = 2 So no. of Mg2+ = 1 40. → T B Malachite → Cu2CO3(OH)2 → Q, R C Bauxite → Al(OH)3 or Al2O3 → R D Calamine → ZnCO3 Argentite → Ag2S → R, T A → P, Q, S C → P, Q, S, T D 1 8 PART - III : MATHEMATICS 32. B, D 41. 8 Let x be Bernoulli RV, Probability to achieve J heads in ntrials = P [x = j] – nCJ pj (1 – p)Aj P [x ≥ 2] = 1 – P [x < 2] O 33. A n CH3 O ⇒ CH3 CH3 O O n 1 1 = 1 – P [0] – P [1] = 1 − − n ≥ 0.96 2 2 (–) HO Siderite → FeCO3 → P, Q, S B 2 1 So octahederal holes ocupied by Al = = 4 2 3+ So tetrahederal holes ocupied by Mg2+ = → P, Q, S A 1+ n 2n f (n ) = HT , ∆ → ≤ 0.04 1+ n n 2 ,f (1 + n ) = 2+n 2n+1 −n 2 + n 1+ n − = <0 n+1 n 2 2 2n+1 f(n) in dereving function f ‘n’ ⇒ f (1 + n ) − f (n ) = CH3 → 34. D C H 2 = C – C H = C H 2 Now f(7) = CH3 C H 3 – C = C H – C H 2B r Br– is a weak base, so it follows 1, 4 addition. f (8 ) = 8 > 0.04 128 9 < 0.04 256 nmin = 8 35. A 36. C 37. A, B, C Cr2+ is reducing agent and itself oxidises to Cr3+. Mn3+ is an oxidizing agent and reduces itself to Mn2+. 42. 5 n = 6 C5 × 5 5 ... 6 ... m = 6 C5 × 5 C4 4 × 5C1 × 5 m =5 n 43.2 Equation of normal at (x1,y1) to parabola y2 = 4ax −1 = 2 Normal at (1, – 2) to y2 = 4x 2 x–y–3=0 r= 1 −1 0 1 = 1 1 1 − = 2 4 4 4 I – 1 = 4× 1 −1= 0 4 ∫ 0 dx + ∫ 0 + x2 = 4 1 1+ 1 ( −2) 0 = 3−2−3 y+2= − ∫ 2 + f ( x + 1) − dx I= 2 y – 2 = − ( x − 1) 2 x+y–3=0 r= ( ) xf x 2 2 −y y − y1 = 1 ( x – x1 ) 2a ∴ at (1, 2) to y2 = 4x ( x − 1) 3+2−3 1+ 1 2 2 ∫ x dx + 2 0 ∫0 2 45. 4 2 2 π 2 46. 3 F′ ( x ) = 2x × 2cos x + − 2cos x 6 π = 4x × cos2 x 2 + − 2cos2 x 6 = 2 r2 = 2 a [x ], x ≤ 2 44. 0 f ( x ) = 0 x > 2 2 2 x 2 2 0 ∫ f ( x ) dx = 4a cos x2 , x2 ≤ 2 f x2 = 0 x 2 > 2 ( ) π 2 a + 6 − 2cos a + 2 ∫ f ( x ) dx = 4a cos 0 π 2 x + 6 − 2cos x + 2 π π f ( x ) = x 8cos x 2 + . − sin x 2 + 2x 6 6 0 x<− 2 2 = x , − 2 ≤ x ≤ 2 x> 2 0 π −4cos x ( − sin ) + 4cos2 x 2 + 6 2 f (0 ) = 4cos2 0, −1 ≤ x ≤ = 0 , 1 < x ≤ 2 0, x> 2 [x + 1],x + 1 ≤ 2 f ( x + 1) = x +1> 2 0, 0 − 1 ≤ x < 0 = 1 0 < x ≤ 1 0 x > 1 47.8 ⇒ 5 cos2 2x + sin4 x + cos4 x + sin6 x + cos6 x = 2 4 ( ) 2 5 cos2 2x + sin2 x + cos2 x − 2sin2 x cos2 x 4 ( + sin2 x + cos2 x ⇒ ... 7 ... 3 π = 4× =3 2 6 ( ) 3 ( ) − 3 sin2 x cos2 x sin2 x + cos2 x = 2 ) 5 1 3 1 − sin2 2x + 1 − sin2 2x + 1 − sin2 2x = 2 4 2 4 5 5 1 3 − sin2 2x + + = 0 4 4 2 4 g ( f ( x )) = 1 x ∈ [0, 2π] 2 total solutions are 8. π π 1 π 1 π −π sin sin .sin sin x ∈ .sin , .sin 2 6 2 2 2 2 2 sin2 2x = 51. A, D, C P 48. 4 Image of y = – 5 about x + y + 4 = 0 is, x = 1 y2 = 4x c at x = 1, y = ±2 distance between A & B = Distance between (1, 2) & (1, –2) = 4 49.A,D Q R a 2 2 g ( x ) x > 0 then f ' ( x ) = g' ( x ) x > 0 f (x ) = 0 x = 0 −g ( x ) x < 0 −g' ( x ) x < 0 a+b+c = 0 ⇒ a+b e x x > 0 then h' ( x ) = e x x > 0 h (x ) = e− x x < 0 e− x x < 0 b . c = 24 ⇒ b c cos θ = 24 ⇒ θ = 30° ( ) ( ) 2 b + c + 2b.c = a ( ) ( ) ( ) ⇒ c =4 3 θ 120 ° ef(x) f ( x ) x > 0 then h f x 1 f ' ( x ).e( fx )f ( x ) > 0 ( ( )) = h ( f ( x )) = −f ' x .e− f ( x )f x < 0 e− f ( x ) f ( x ) x < 0 ( ) ( ) ( 2 ) 30° 30° ( a×b + c ×a = a× b − c 50. A, B, C ( π π π f ( x ) = sin sin sin x & g ( x ) = sin x 6 2 2 = 2 a = b sin (30° ) = 48 3 π π π −1 1 f (g ( x )) = sin sin .sin sin x ∈ , 2 2 2 2 6 (x ) = lim 52. C, D 53. B, C C2 → C2 → C1 C3 → C3 → C1 f ' (x ) x →0 g' ) = a × 2b + a = 2 a × b −1 1 ⇒ f (x ) ∈ , 2 2 x →0 g ) = a × b − −a − b π π −π π π −π π sin x ∈ , ⇒ .sin sin x ∈ , 2 2 2 6 2 6 6 f (x ) = a a . b = a b cos 150° = – 72 x g ex 1 x > 0 then f (h ( x )) = e x g' e x > 0 f (h ( x1)) = −x −x x < 0 x g x e g' e x < 0 h b (x ) π x π π π cos sin sin x . .cos sin x . cos x π 6 2 2 6 2 = = π 6 cos x 2 ... 8 ... (1 + α )2 α (2 + 3d) 2α (2 + 4α ) (2 + α )2 α ( 4 + 3d) 2α ( 4 + 4α ) (3 + α )2 α (6 + 3d) 2α (6 + 4α ) 56. A,D (1 + α ) 2 2 2 + 3α 2 + 4α ⇒ 2α 2 (2 + α ) 2 P 4 + 3α 4 + 4α (3 + α )2 6 + 3α 6 + 4α O C3 → C3 → C1 (1 + α )2 2 + 3α α = 2α 2 (2 + α ) 4 + 3α α 2 (3 + α )2 6 + 3α 2 t2 ,t 2 2 (Slope of OP) × (Slope of OQ) = – 1 t1t2 = – 4 Q α C2 → C2 –3 C1 Area of ∆OPQ = 3 2 (1 + α ) 2 2 2 α = 2α2 (2 + α ) 4 α 2 (3 + α ) 2 = 4α (1 + α )2 11 (2 + α ) 2 1 (3 + α ) 2 t4 t4 1 + t12 2 + t 22 = 72 4 4 t2 t2 + 1 2 + 1 = 72 4 4 ( t1t 2 )2 3 1 2 t2 + 1 2 + 1 = 72 4 4 2 ( 4 + 2α ) 2 0 = 4α 16 + 16 = 72 16 + 4 t12 + t12 [6 + 4α − 8 − 4α ] t12 + = −8 α 3 −8α3 = −648α ( 2 1 (t22 + 4)(t22 + 4) = 72 ( t1t2 )2 + 4 ( t12 + t22 ) + 16 = 72 11 = 4α3 3 + 2α 1 0 3 1 t2 ( −4 )2 R2 → R2 –R1 R3 → R3 –R1 (1 + α ) t2 t2 1 + t12 2 + t 22 = 3 2 2 2 1 2 6 α 2 3 t1 ,t 1 2 16 t12 = 10 t14 − 10t12 + 16 = 0 ) 8α α − 81 = 0 (t12 − 2)(t12 − 8) = 0 α = 0, 9, −9 t1 = ± 2, ± 2 2 54. B, D ( )( P 1, 2 , 4,2 2 55. A, B ... 9 ... ) 57. A, C (1 + e ) y '+ ye x x −3ax 2 − 2 x < 1 (B) f ( x ) = bx + a2 x ≥ 1 for continuity – 3a – 2 = b + a2 = 1, If x dx =e (1+ ex ) ∫ e 1+ ex = eloge = 1e x ex y '+ 1 + ex ( −6ax x < 1 f ' (x ) = b x ≥1 for differentiability b = – 6a a2 – 6a = – 3a – 2 ⇒ a2 – 3a + 2 = 0 ⇒ a = 1, 2 1 y = 1 + ex ) ⇒ y. 1 + ex = x + k at x = 0, y = 2 ⇒k=4 y= x+4 1+ e dy = dx ( 2ab =4 a+b ⇒ ab = 2(a + b) a + q = 10 a+b=5+q ab = 2 (5 + q) (D) x ) 1 + ex − ( x + 4 ) ex (1 + ex ) 2 Let h(x) = 1 + ex – xex – 4ex h’ (x) = ex – 4ex – ex – xex = – (x + 4) ex < 0 for (–1, 0) h (–1) = 1 + e–1 + e–1 – 4e–1 ⇒ b= ⇒a= A→Q B → P, Q C → P, Q, R, S, T D → Q, T (A) Projection of αi + β i on 3i + j 2 )= 5 15 ,6 q = ,4 2 2 (a − q | = 2,5 58. B, C ( 10 + 2q =5+q a a ⇒ a + 10 + 2q = 5a + aq a2 + 10 + 2 (10 – a) = 5a + a(10 – a) 2a2 – 17a + 30 = 0 2 >0 e h(0) = 1 + 1 – 4 < 0 then h (x) has a root in (–1, 0) 3i + j = (αi + βi ). a+ 2 = 1− 59. 2 (5 + q ) (1) (2) (3) 3α + β = 3 2 60. α = 2 + 3β ⇒ α = 2 + 3 2 3 − 3α = 2 + 6 – 3α ⇒ α = 2 ... 10 ... A → P, R, S B→P C → P, Q D → S, T
© Copyright 2024