11.8: Power Series! Wednesday, March 11 Speed Round Determine whether each of the following series converges or diverges. 1. ∞ X 1 n n=1 5. ∞ X 1 √ n n=1 2. ∞ X (−1)n n n=1 6. ∞ X (−1)n 1 + ln n n=1 10. 3. ∞ X 2n n! n=1 7. ∞ X n2 ln n 4n n=1 11. 3n √ n2 + n n=1 4. ∞ X 2n n2 n=1 8. ∞ X n5 5n n! n=1 12. ∞ X n! 30n n=1 9. ∞ X (−2)n n3 n=1 ∞ X (−1)n n=1 ∞ X Interval of Convergence How to tell at a glance what the interval of convergence is: 1. If n! appears, ignore everything else. R = 0 or R = ∞. P∞ 2. If not, write your series (if possible) as n=1 A(n) · (x − a)n · rn where rn is the part that increases exponentially and A(n) is everything else. 3. R = 1/|r|. The interval of convergence is (a − R, a + R), except maybe for the endpoints. P∞ 4. If n=1 A(n) converges absolutely, the interval is [a − R, a + R]. P∞ 5. If n=1 A(n) converges conditionally the interval will be one-sided (either (a−R, a+R] or [a−R, a+R)). 6. If limn→∞ A(n) 6= 0, the interval is (a − R, a + R). Find the intervals of convergence of the following functions: 1. ∞ X xn 5. n=1 2. 3. 4. ∞ X xn n n=1 ∞ X 6. ∞ X (x − 5)n n · 3n n=1 ∞ X xn n2 n=1 7. ∞ X (x − 3)n 2n n=1 8. ∞ X n=1 ∞ X n=1 5n ∞ X n!(x − 1)n n=1 10. ∞ X (x − 3)n n(−4)n n=1 (x + 3)n n! 11. ∞ X xn n! n=1 n 2n 12. (−2)n n=1 9. (x + 4)n √ n (x + 7)n 1 ∞ X (−1)n n=1 (x + 2)n √ n n Power Series Arithmetic! 1. ex = 3. cos x = 2. sin x = 4. 1 = 1−x Rewrite the power series above in sigma notation. Add and Multiply! 1. 5ex = 2. sin x + cos x = Compose! 1. e−x = 4. 1 = 1 + x2 2. sin(2x) = 5. 1 = 5−x 1 = 1 − 3x 6. 1 = 2 + 3x 2 3. Differentiate and Integrate! 1. d x dx e 2. d dx 3. R = sin x = ex = R 1 4. ln(1 + x) = 1+x = R 1 5. arctan x = 1+x 2 = R 6. sin x = . . . Multiply and Divide? Verify the following: 1. sin(2x) = 2 sin x cos x 2. ex e−x = 1 3. sin2 x + cos2 x = 1 4. Find 1/ cos(x) by solving (a0 + a1 x + a2 x2 + . . .) cos(x) = 1 term-by-term. Invert?? 1. Find arcsin(x) by solving P (sin x) term-by-term. √ 2. Find 1 + x by solving P (x)2 = 1 + x. 2
© Copyright 2025