9.3 Adding and Subtracting Radicals 9.3 OBJECTIVES 1. Add and subtract expressions involving numeric radicals 2. Add and subtract expressions involving algebraic radicals Two radicals that have the same index and the same radicand (the expression inside the radical) are called like radicals. For example, 213 and 513 are like radicals. 12 and 15 are not like radicals—they have different radicands. NOTE “Indices” is the plural of “index.” 3 12 and 12 are not like radicals—they have different indices (2 and 3, representing a square root and a cube root). Like radicals can be added (or subtracted) in the same way as like terms. We apply the distributive property and then combine the coefficients: 215 315 (2 3)15 515 Example 1 Adding and Subtracting Like Radicals Simplify each expression. NOTE Apply the distributive (a) 512 3 12 (5 3)12 812 property, then combine the coefficients. (b) 715 215 (7 2)15 515 (c) 817 17 217 (8 1 2)17 917 CHECK YOURSELF 1 Simplify. (a) 215 7 15 (c) 513 213 13 (b) 917 17 © 2001 McGraw-Hill Companies If a sum or difference involves terms that are not like radicals, we may be able to combine terms after simplifying the radicals according to our earlier methods. Example 2 Adding and Subtracting Radicals Simplify each expression. (a) 312 18 We do not have like radicals, but we can simplify 18. Remember that 18 14 2 212 717 718 CHAPTER 9 EXPONENTS AND RADICALS so 18 312 18 312 212 (3 2)12 512 NOTE Simplify 112. (b) 513 112 513 14 3 513 14 13 NOTE The radicals can now be 513 213 combined. Do you see why? (5 2)13 313 CHECK YOURSELF 2 Simplify. (a) 12 118 (b) 5 13 127 If variables are involved in radical expressions, the process of combining terms proceeds in a fashion similar to that shown in previous examples. Consider Example 3. We again assume that all variables represent positive real numbers. Example 3 Simplifying Expressions Involving Variables Simplify each expression. NOTE Because like radicals are (a) 513x 213x (5 2)13x 313x involved, we apply the distributive property and combine terms as before. (b) 223a3 5a13a 22a2 3a 5a13a NOTE Simplify the first term. 22a 2 13a 5a13a 2a13a 5a13a NOTE The radicals can now be (2a 5a)13a 7a13a combined. Simplify each expression. (a) 217y 317y (b) 220a2 a145 CHECK YOURSELF ANSWERS 1. (a) 915; (b) 817; (c) 413 3. (a) 517y; (b) a15 2. (a) 412; (b) 213 © 2001 McGraw-Hill Companies CHECK YOURSELF 3 Name 9.3 Exercises Section Date Simplify by combining like terms. 1. 212 4 12 2. 13 513 ANSWERS 1. 2. 3. 1117 417 4. 5 13 312 3. 4. 5. 517 3 16 6. 3 15 515 5. 6. 7. 213 5 13 8. 2 111 5111 7. 8. 9. 213x 513x 10. 712a 312a 9. 10. 11. 11. 213 13 313 12. 315 215 15 12. 13. 13. 517 2 17 17 14. 3110 2110 110 14. 15. 15. 215x 515x 215x 16. 513b 213b 413b 16. 17. 17. 213 112 18. 512 118 18. 19. © 2001 McGraw-Hill Companies 20. 19. 120 15 20. 198 312 21. 22. 21. 216 154 22. 213 127 23. 24. 23. 172 150 24. 127 112 719 ANSWERS 25. 25. 3112 148 26. 518 2118 27. 2145 2120 28. 2198 4118 29. 112 127 13 30. 150 132 18 31. 3124 154 16 32. 163 2128 517 33. 2150 3118 132 34. 3127 4112 1300 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. Simplify by combining like terms. 38. 2 35. a127 223a 2 36. 522y 3y18 37. 523x3 2127x 38. 722a3 18a 39. 40. 41. 42. Use a calculator to find a decimal approximation for each of the following. Round your answer to the nearest hundredth. 43. 44. 45. 39. 13 12 40. 17 111 41. 15 13 42. 117 113 43. 413 715 44. 812 317 45. 517 8113 46. 712 4111 720 © 2001 McGraw-Hill Companies 46. ANSWERS 47. Perimeter of a rectangle. Find the perimeter of the rectangle shown in the figure. 47. 48. 36 49. 49 50. a. b. 48. Perimeter of a rectangle. Find the perimeter of the rectangle shown in the figure. c. Write your answer in radical form. d. 147 e. 108 f. g. h. 49. Perimeter of a triangle. Find the perimeter of the triangle shown in the figure. 3 3 2 3 2 50. Perimeter of a triangle. Find the perimeter of the triangle shown in the figure. 4 © 2001 McGraw-Hill Companies 5 3 5 3 Getting Ready for Section 9.4 [Section 3.4] Perform the indicated multiplication. (a) (c) (e) (g) 2(x 5) m(m 8) (w 2)(w 2) (x y)(x y) (b) (d) (f) (h) 3(a 3) y( y 7) (x 3)(x 3) (b 7)(b 7) 721 Answers © 2001 McGraw-Hill Companies 1. 612 3. 717 5. Cannot be simplified 7. 313 9. 713x 11. 613 13. 417 15. 515x 17. 413 19. 15 21. 16 23. 1112 25. 213 27. 215 29. 413 31. 416 33. 1512 35. a13 37. (5x 6)13x 39. 0.32 41. 3.97 43. 8.72 45. 42.07 47. 26 49. 2 13 3 a. 2x 10 b. 3a 9 2 c. m2 8m d. y2 7y e. w 2 4 f. x 2 9 g. x2 2xy y 2 h. b 14b 49 722
© Copyright 2025