How to Bind a Moving Target Flexibility and Entropy in Protein-Protein Binding. Johan Leckner Raik Grünberg & Michael Nilges Outline ➀ Models for protein-protein association ➁ Conformal sampling ➂ Flexibility before and after binding ➃ Conformal entropy ➄ Recognition between structure ensembles ➅ A unified model for protein-protein association ➀ Models ➀ Models recognition dominated by ... Key-lock ... short range forces (vdW, ee, (desolvation)) [Fischer 1894] Induced fit ... long range forces (ee, (desolvation)) [Koshland 1958, .. Camacho et al. 1999, Selzer & Shreiber 2001, ...] Conformer selection ... short range forces & conformer equilibrium [MWC 1965, Foote & Millstein 1994, ..., Kumar et al. 2000] ➀ Models Problem with model ... Key-lock ... short range forces (vdW, ee, (desolvation)) ... not consistent with free structures Induced fit ... long range forces (ee, (desolvation)) ... not compatible with short-range forces Conformer selection ... short range forces & conformer equilibrium ... not consistent with the fast pace of recognition ➀ Time scale of recognition Northrup & Erickson 1992: ...series of microcollisions, ≈100% recognition success Window of opportunity: lower limit: 400 ps -2 ns (Brownian dynamics simulations) upper limit: 10 ns (exp., absence of unspecific interactions) How large bound fraction do we need for 50% recognition success? ➡ 4% (400 ps); 1%(10 ns) ➁ Conformal sampling ➁ Molecular dynamics Sampling strategy: 10 parallell 50 ps trajectories 9 Å layer of explicit water Two setups: “normal” MD principal component restrained (PCR) MD MD PCR-MD ➁ Complexes studied IDa Receptor / Ligand c01 c02 c03 c04 c05 c06 c08 c11 c13 c14 c15 c16 c17 c19 c20 c21 c22 Trypsin / Amyloid B-protein precursor inhibitor domain A-chymotrypsinogen / Pancreatic secretory trypsin inhibitor Kallikrein A / Pancreatic trypsin inhibitor Subtilisin BPN / Subtilisin inhibitor Extracellular domain of tissue factor / Antibody Fab 5G9 Humanized anti-lysozyme Fv / Lysozyme Anti-lysozyme antibody Hyhel-63 / Lysozyme Barnase / Barstar Ribonuclease inhibitor / Ribonuclease A Acetylcholinesterase / Fasciculin-II HIVB-1 NEF / FYN tyrosin kinase SH3 domain Uracil-DNA glycosylase / Inhibitor RAS activating domain / RAS Glycosyltransferase / Tendamistat CDK2 cyclin-dependant kinase 2 / Cyclin A CDK2 cyclin-dependant kinase 2 / KAP Heteromeric G-protein / Transductin Gt-A a Complex PDB codes with chain / model identifier rec lig com 1BRA 1AAP(A) 1BRC(E:I) 2CGA(A) 1HPT 1CGI(E:I) 2PKA(AB) 5PTI 2KAI(AB:I) 1SUP 3SSI 2SIC(E:I) 1FGN(LH) 1BOY 1AHW(AB:C) 1BVL(AB) 3LTZ 1BVK(AB:C) 1DQQ(AB) 3LTZ 1DQJ(AB:C) 1A19(A) 1A2P(A) 1BSG(A:E) 2BNH 7RSA 1DFJ(E:I) 1VXR 1FSC(A) 1FSS(A:B) 1AVV 1SHF(A) 1AVZ(B:C) 1AKZ 1UGI(A) 1UGH(E:I) 1WER 5P21 1WQ1(R:G) 1PIF 2AIT(1) 1BVM(P:T) 1HCL 1VIN 1FIN(A:B) 1B39(A) 1FPZ(A) 1FQ1(A:B) 1TBG(AE) 1TAG 1GOT(A:BG) identifier used throughout the paper (retained from www .bmm.icnet.uk/docking/systems.html); in the bound, but not in the free structure (-, vice versa). b Size Size b rec lig 223 56 245 56 232 58 275 108 248 211 224 129 424 129 108 89 456 124 532 61 99 59 223 83 324 166 495 74 294 252 290 176 408 314 $res c 0 0 -1 -1 -11 0 0 2 0 0 2 -1 -4 -2 12 13 13 in residues; c number of residues resolv ed ➂ Flexibility before and after binding ➂ Free binding interfaces ...are flexible compared to random surface patches. 15 11 21 11 10 7 2 12 4 6 2 7 7 3 1 14 8 2 4 4 17 4 11 8 5 7 3 6 2 10 3 1 standard deviation (SD) 0.5 0 24 16 43 16 12 11 27 3 7 15 15 9 10 6 24 4 23 7 5 10 40 8 27 0.5 31 14 1 12 8 23 B backbone atoms (10 x 50 ps) 15 4 1.5 10 3 2 5 0 15 4 flexibility [Å] 1.5 7 2 ligand receptor average binding patch flexibility A all atoms (10 x 50 ps) 13 5 2.5 c01 c02 c03 c04 c05 c06 c08 c11 c13 c14 c15 c16 c17 c19 c20 c21 c22 random patch flexibility (mean and SD) and number of random patches random patch SD (mean and SD) ➂ Comparing free and bound. On average binding does not restrict overall flexibility. average flexibility [Å] free 2 all bb ncs cs - YSD] bound all heavy atoms backbone non-contact surf. contact surface B Ⓐ 10×50 ps MD A Ⓑ 10×1 ns MD 1.5 Longer more elaborate simulation for 7 of the complexes. 1 0.5 0 all bb ncs cs all bb ncs cs ➃ Conformational entropy ➃ Conformational entropy Binding entropy and its decomposition. All values are for bound – free state (in cal mol conformational ∆S c02 c06 c11 c15 c16 c17 k c20 a receptor lig b rec lig c rec × lig d spurious e 20 ± 37 -196 ± 43 -115 ± 35 -55 ± 24 75 ± 15 -85 ± 44 -149 ± 18 -46 ± 18 31 ± 20 -123 ± 33 -103 ± 22 -144 ± 17 -151 ± 27 104 ± 16 46 ± 1 55 ± 1 55 ± 3 70 ± 2 45 ± 1 52 ± 8 60 ± 2 -11 ± 0 -8.2 ± 1 -8.9 ± 0 -6.6 ± 0 -13 ± 1 -11 ± 1 -14 ± 1 2.4 ± 3 4.3 ± 2 3.6 ± 2 3.0 ± 1 3.0 ± 2 10 ± 6 4.4 ± 7 ∼ rec a 1 K 1 at 1M standard state). total ∆S ∆Scon f f t rg sol vh 19 ± 44 -101 ± 34 -157 ± 41 -60 ± 25 -0.7± 13 -137 ± 49 43 ± 23 -100 -105 -101 -98 -103 -108 -109 334 135 242 207 422 587 556 total i 253 ± 44 -71 ± 34 -12 ± 41 49 ± 25 318 ± 13 342 ± 49 490 ± 23 ex p j (-34 l ) -1m 20n only; b ligand only; c entropy gain from rigid body motions of receptor against ligand; d entropy loss from motions correlated across the binding interface; e difference between spurious correlations in free and bound state; f total change of vibrational entropy; g rotational and translational entropy; h solv ent entropy estimated from buried accessible surface; i total entropy change calculated (con f + t, r + sol v); j measured entropy change; k not converged; l measured for a related receptor, Bath et al. 1994, Sundberg et al. 2000; m Frisch et al. 1997; n Arold et al. 1998 ➃ Conformational entropy Binding entropy and its decomposition. All values are for bound – free state (in cal mol conformational ∆S c02 c06 c11 c15 c16 c17 k c20 lig b rec lig c rec × lig d spurious e 20 ± 37 -196 ± 43 -115 ± 35 -55 ± 24 75 ± 15 -85 ± 44 -149 ± 18 -46 ± 18 31 ± 20 -123 ± 33 -103 ± 22 -144 ± 17 -151 ± 27 104 ± 16 46 ± 1 55 ± 1 55 ± 3 70 ± 2 45 ± 1 52 ± 8 60 ± 2 -11 ± 0 -8.2 ± 1 -8.9 ± 0 -6.6 ± 0 -13 ± 1 -11 ± 1 -14 ± 1 2.4 ± 3 4.3 ± 2 3.6 ± 2 3.0 ± 1 3.0 ± 2 10 ± 6 4.4 ± 7 ∼ rec a 1 K 1 at 1M standard state). total ∆S ∆Scon f f t rg sol vh 19 ± 44 -101 ± 34 -157 ± 41 -60 ± 25 -0.7± 13 -137 ± 49 43 ± 23 -100 -105 -101 -98 -103 -108 -109 334 135 242 207 422 587 556 total i ex p j 253 ± 44 -71 ± 34 (-34 l ) -12 ± 41 -1m 49 ± 25 20n con f 318 ± 13 342 ± 49 490 ± 23 ∆S 19 ± 44 ± motions a receptor only; b ligand only; c entropy gain from rigid body motions of receptor against ligand; d entropy-101 34 corloss from related across the binding interface; e difference between spurious correlations in free and bound state; f total change of vibrational ± 41 calcu-157 entropy; g rotational and translational entropy; h solv ent entropy estimated from buried accessible surface; i total entropy change lated (con f + t, r + sol v); j measured entropy change; k not converged; l measured for a related receptor, Bath et al. 1994,±Sundberg et al. -60 25 2000; m Frisch et al. 1997; n Arold et al. 1998 -0.7± 13 -137 ± 49 Conformational entropy can both rise or fall. 43 ± 23 ➃ Conformational entropy Binding entropy and its decomposition. All values are for bound – free state (in cal mol 1 K conformational ∆S c02 c06 c11 c15 c16 c17 k c20 lig b rec lig c rec × lig d spurious e 20 ± 37 -196 ± 43 -115 ± 35 -55 ± 24 75 ± 15 -85 ± 44 -149 ± 18 -46 ± 18 31 ± 20 -123 ± 33 -103 ± 22 -144 ± 17 -151 ± 27 104 ± 16 46 ± 1 55 ± 1 55 ± 3 70 ± 2 45 ± 1 52 ± 8 60 ± 2 -11 ± 0 -8.2 ± 1 -8.9 ± 0 -6.6 ± 0 -13 ± 1 -11 ± 1 -14 ± 1 2.4 ± 3 4.3 ± 2 3.6 ± 2 3.0 ± 1 3.0 ± 2 10 ± 6 4.4 ± 7 ∼ rec a 1 at 1M standard state). total ∆S ∆Scon f f t rg sol vh 19 ± 44 -101 ± 34 -157 ± 41 -60 ± 25 -0.7± 13 -137 ± 49 43 ± 23 -100 -105 -101 -98 -103 -108 -109 334 135 242 207 422 587 556 total i 253 ± 44 -71 ± 34 -12 ± 41 49 ± 25 318 ± 13 342 ± 49 490 ± 23 a receptor ex p j (-34 l ) -1m 20n only; b ligand only; c entropy gain from rigid body motions of receptor against ligand; d entropy loss from motions correlated across the binding interface; e difference between spurious correlations in free and bound state; f total change of vibrational entropy; g rotational and translational entropy; h solv ent entropy estimated from buried accessible surface; i total entropy change calculated (con f + t, r + sol v); j measured entropy change; k not converged; l measured for a related receptor, Bath et al. 1994, Sundberg et al. 2000; m Frisch et al. 1997; n Arold et al. 1998 In agreement with experimental data. total -71 ± 34 -12 ± 41 49 ± 25 ex p (-34) -1 20 ➃ Conformational entropy c02 + inhibitor α-chymotrypsinogen ➄ Recognition between structure ensembles ➄ Ensemble-Docking ligand receptor Free conformations Molecular dynamics simulation Fuzzy clustering 11×ligand 11×receptor Rigid-body docking 62.000 docking solutions 10 representative conformers + free conformation 0.8 Fraction of native atom contacts (fnac) Glycosyltransferase and Tendamistat (c19) 1.0 Bound docking A 0.6 0.4 0.2 1.0 0.8 Free docking (traditional docking) B 0.6 0.4 0.2 1.0 0.8 Best scoring ensemble combination C 0.6 0.4 0.2 0.0 0 100 200 300 Docking solution 400 500 ➄ Ensemble-docking c19 PCR-MD fnac solutions >0 285 >0.1 >0.2 >0.3 75 >0.4 >0.5 >0.6 30 >0.7 >0.8 Ligand conformers 10 9 8 7 6 5 4 3 2 1 free B free C 2 1 2 3 4 5 6 7 8 9 10 Receptor conformers ➄ Recognition of conformers ...does not depend on the bound conformation All conformer combinations 25 score - scorefree 20 (interface heavy atoms only) 15 MD 10 PCR-MD 5 0 -5 0.0 0.5 1.0 1.5 rmsd to bound - rmsdfree to bound [Å] ➅ A unified model ➅ A unified model We need a model that is compatible with that... Binding sites are flexible. Multiple complementary conformers in the free ensembles. Recognition does not depend on the bound structure. Conformation entropy can rise or fall. ➅ A unified model We need a model that is compatible with that... ☹ Multiple complementary conformers. ☹☹☹ Recognition does not depend on the bound structure. ☹ ☹ Conformation entropy can rise or fall. ☹☹☹ Binding sites are flexible. key-lock? conformer selection? Induced fit? ... or ... ➅ A unified model ➀ Diffusion ➁ Free conformer selection ➂ Refolding Rf + Lf Free energy Three step model: Aligned Encounter Complex k1 k-1 Rf + Lf Rf Lf k2 k-2 Recognition Complex R*f L*f k3 k-3 Native Complex RbLb Rf Lf R*f L*f Reaction coordinate RbLb long range electrostatic desolvation rotational and translational entropy conformational entropy short range electrostatic and van der Waals interactions ➅ A unified model Aligned Encounter Complex electrostatic steering/ partial desolvation Free energy Diffusion Rf + Lf k1 k-1 Rf + Lf Rf Lf k2 k-2 Recognition Complex R*f L*f k3 k-3 Native Complex RbLb Rf Lf R*f L*f Reaction coordinate RbLb long range electrostatic desolvation rotational and translational entropy conformational entropy short range electrostatic and van der Waals interactions ➅ A unified model Aligned Encounter Complex Free energy Conformer selection Rf + Lf k1 k-1 Rf + Lf Rf Lf k2 k-2 Recognition Complex R*f L*f k-3 RbLb Rf Lf R*f L*f Reaction coordinate fuzzy conformer selection, (local induced fit) k3 Native Complex RbLb long range electrostatic desolvation rotational and translational entropy conformational entropy short range electrostatic and van der Waals interactions ➅ A unified model Aligned Encounter Complex Rf + Lf Free energy Refolding k1 k-1 Rf + Lf Rf Lf k2 k-2 Recognition Complex R*f L*f k3 k-3 Native Complex RbLb Rf Lf R*f L*f Reaction coordinate RbLb long range electrostatic desolvation rotational and translational entropy (induced fit) conformational entropy short range electrostatic and van der Waals interactions ➅ A unified model Aligned Encounter Complex Sfree Free energy Conformational entropy Rf + Lf k1 k-1 Rf + Lf Rf Lf k2 k-2 Recognition Complex R*f L*f k3 k-3 Native Complex RbLb Rf Lf R*f L*f Reaction coordinate Sbound RbLb long range electrostatic desolvation rotational and translational entropy conformational entropy short range electrostatic and van der Waals interactions Summary binding sites are more flexible than the remaining surface multiple complementary conformers exist within the free ensembles recognition does not depend on the bound conformation conformational entropy can both rise or fall Binding may follow 3-step mechanism of: ➀ Diffusion ➁ Free conformer selection ➂ Refolding Acknowledgements Collaborators: Raik Grünberg and Michael Nilges, Institute Pasteur Funding: Knut and Alice Wallenberg Foundation For more protein-protein binding and docking visit poster 98
© Copyright 2025