Document 202144

HOW TO DO REGIONALIZED LCA
Chris Mutel, Stephan Pfister, Stefanie Hellweg
ETH Zurich, InsDtute for Environmental Engineering, Ecological Systems Design Group
Email contact: [email protected]
Regionaliza*on -­‐ easy, but hard
2
www.ifu.ethz.ch/ESD
Regionaliza*on -­‐ easy, but hard
3
www.ifu.ethz.ch/ESD
Regionaliza*on -­‐ easy, but hard
4
www.ifu.ethz.ch/ESD
Regionaliza*on -­‐ easy, but hard
5
www.ifu.ethz.ch/ESD
3 difficul*es
6
www.ifu.ethz.ch/ESD
3 difficul*es
• Uncertainty in inventory spa/al data
6
www.ifu.ethz.ch/ESD
3 difficul*es
• Uncertainty in inventory spa/al data
• Choosing impact assessment spa/al scale
6
www.ifu.ethz.ch/ESD
3 difficul*es
• Uncertainty in inventory spa/al data
• Choosing impact assessment spa/al scale
• Matching inventory and impact assessment spa/al supports
6
www.ifu.ethz.ch/ESD
Case study example
5002 power plants
35 fuel types
impacts of freshwater consumpDon
www.ifu.ethz.ch/ESD
7
7
Inventory spa*al uncertainty
8
www.ifu.ethz.ch/ESD
Inventory uncertainty
Probability
9
www.ifu.ethz.ch/ESD
Inventory uncertainty
Probability
10
www.ifu.ethz.ch/ESD
Spa*al Autocorrela*on
0.8 0.73 0.67 0.75 0.78
0.8 0.32 0.2 0.43 0.95
0.88 0.9 0.88 0.85 0.72
0.82 0.16 0.78 0.32 0.32
0.92 0.91 0.87 0.90 0.88
0.6 0.18 0.3 0.26 0.41
0.97 0.93 0.84 0.91 0.95
0.55 0.28 0.16 0.33 0.7
0.98 1.0 0.86 0.83 0.81
0.25 0.69 0.22 0.7 0.56
0.54
0.03
www.ifu.ethz.ch/ESD
11
Regionalized IA
Disaggregated
Highly aggregated
www.ifu.ethz.ch/ESD
12
Regionalized IA
Disaggregated
Highly aggregated
www.ifu.ethz.ch/ESD
12
Regionalized IA
Disaggregated
Highly aggregated
www.ifu.ethz.ch/ESD
12
Regionalized IA
Disaggregated
Highly aggregated
www.ifu.ethz.ch/ESD
12
Global autocorrela*on
13
www.ifu.ethz.ch/ESD
Comparing spa*al scales
14
AutocorrelaDon-­‐opDmized www.ifu.ethz.ch/ESD
Watershed-­‐based spaDal scale
13
spaDal scale
Change of support problem
15
www.ifu.ethz.ch/ESD
Change of support problem
1
A=
4
16
www.ifu.ethz.ch/ESD
Change of support problem
Probability
17
www.ifu.ethz.ch/ESD
Change of support problem
18
www.ifu.ethz.ch/ESD
Change of support problem
3e-­‐4 -­‐> 2e-­‐4
3e-­‐4 -­‐> 2e-­‐5
5e-­‐4 -­‐> 3e-­‐5
3e-­‐4 -­‐> 3e-­‐5
0.42 -­‐> 0.49
0.48 -­‐> 0.50
3e-­‐4 -­‐> 3e-­‐4
5e-­‐4 -­‐> 5e-­‐4
0.09 -­‐> 0.002
3e-­‐4 -­‐> 1.7e-­‐3
2e-­‐4 -­‐> 4e-­‐4
4e-­‐4 -­‐> 5e-­‐5
2e-­‐4 -­‐> 4e-­‐4
18
www.ifu.ethz.ch/ESD
Case study results
19
www.ifu.ethz.ch/ESD
Conclusions
20
www.ifu.ethz.ch/ESD
Conclusions
• Lack of data and so<ware prevented LCA
✓Regionalized impact assessment methods
✓Regionalized inventory databases
20
www.ifu.ethz.ch/ESD
Conclusions
• Lack of data and so<ware prevented LCA
✓Regionalized impact assessment methods
✓Regionalized inventory databases
• Inventory datasets •Integrated uncertainty (even spa/al) assessment possible
20
www.ifu.ethz.ch/ESD
Conclusions
• Lack of data and so<ware prevented LCA
✓Regionalized impact assessment methods
✓Regionalized inventory databases
• Inventory datasets •Integrated uncertainty (even spa/al) assessment possible
• Impact assessment methods
•Systema/cally choose spa/al scale
•Provide background emissions
20
www.ifu.ethz.ch/ESD
Thanks!
[email protected]
Further reading:
Aldstadt, J. & GeDs, A. (2006). Using AMOEBA to Create a Spa4al Weights Matrix and Iden4fy Spa4al Clusters. Geographical Analysis, 38 (4), 327-­‐343.
Arlinghaus, S., ed. Prac4cal Handbook of Spa4al Sta4s4cs. CRC Press: Boca Raton, FL, 1996.
GeDs, A. (2009). Spa4al Weights Matrices. Geographical Analysis, 41 (4), 404-­‐410.
Gotway, C. A. & Young, L. J. (2002). Combining Incompa4ble Spa4al Data. Journal of the American StaDsDcal AssociaDon, 97 (458), 632-­‐648.
Pocng, J. & Hauschild, M. (2006). Spa4al Differen4a4on in Life Cycle Impact Assessment: A decade of method development to increase the environmental realism of LCIA. The InternaDonal Journal of Life Cycle Assessment, 11, 11-­‐13.
AT: Impact of Spa*al Uncertainty
• Ignoring uncertainty is not realis/c
• > 50% of all plants intersected an impact assessment spa/al unit with a factor of 2 difference in characteriza/on factor www.ifu.ethz.ch/ESD
22
AT: Reservoir water consump*on
• Data from NID
• Average two methods to es/mate evapora/on
• Region-­‐specific evapora/on (Pfister et al 2011)
• Combine area w/ loca/on-­‐specific evapora/on (FAO)
• Alloca/on based on priority rank
• Smaller percentage for run-­‐of-­‐river
www.ifu.ethz.ch/ESD
23
AT: Fossil fuel evapora*on
• Cooling systems from EIA 767 reports (2005, nuclear 2000)
• EvaporaDon rates do not vary in space
• DifferenDate between:
• Once through, freshwater
• Once through, salt water
• RecirculaDng
• Mechanical drae, wet process
• Mechanical drae, dry process
• Mechanical drae, wet/dry process
• Coal/biomass
• Nuclear
• Natural gas/oil
www.ifu.ethz.ch/ESD
24
AT: Aggrega*on methodology
www.ifu.ethz.ch/ESD
25
AT: Variance in different supports
www.ifu.ethz.ch/ESD
26
AT: Not complete disaggrega*on
• Numbers, not informa/on
• Regionalized LCIA maps are important outputs
• Need to be able to interpret them
• Gives no spa/al understanding
• Appropriate spa/al scale is different for each method
www.ifu.ethz.ch/ESD
27
AT: Need for Background Emissions
Area-­‐weighted CF
Emissions-­‐
weighted
CF
Ecosystem damage (PDF-­‐m2/year)
7.69
5.39
Human Health (DALYs)
4.5 ·∙ 107
3.7 ·∙ 108
Resource consumpDons (MJ)
18.4
32.5
www.ifu.ethz.ch/ESD
28
AT: Polygon uncertainty
• Difficult because no set rela/onship between area and buffer sizes
• Preliminary method relates number of ver/ces to polygon perimeter
• Area of further research
• Need data set
www.ifu.ethz.ch/ESD
29
AT: SoPware
• So<ware is open source
• Documenta/on and installa/on Jan-­‐Mar 2012
• Paper in submission
www.ifu.ethz.ch/ESD
30
AT: SoPware
www.ifu.ethz.ch/ESD
31