How to achieve conformity with the dose expression and sprayer

Pflanzenschutz-Nachrichten Bayer 60/2007, 1
71-84
How to achieve conformity with the dose expression and sprayer
function in high crops
H. Koch
1 Introduction
The term dose indicates a specific quantity or amount of a substance and is in
general use in medicine and plant protection. The form and size of dose is extremely important when carrying out and
later assessing the field trials as well as
for professional applications.
Initially plant protection products (PPPs)
are tested on a small scale, i.e. small plot
field trials; later on a much larger and extensive scale, i.e. farms and orchards to
determine the efficacy of the substances
to protect crops against pests, weeds and
diseases.
The test results, collected and analysed
over a period of several years, provide the
information necessary for registration
purposes. The data must reflect the prac-
tical situation in the field. Only then, and
after successful registration is the substance released for general use as a crop
protectant. The registration process results in the label instructions, which are
legally binding for the user. A clear understanding of all aspects of PPP dosing
is needed in order to ensure consistency
in decision making.
Comparison of label instructions for
PPPs authorised in different European
countries reveal remarkable differences
in dose expression (Table 1). While in
arable crops the dose unit is kg or liter (L)
per hectare ground area, different dose
expressions are used in high crops. This
is quite surprising as any application
leads to effective initial deposits on the
treated crop. The European and Mediterranean Plant Protection Organisation has
Table 1: In high crops, recommended doses of plant protection products are expressed using different units throughout Europe.
Country
Crop
Unit used for dose expression
France
Grapevine kg/ha
Portugal, Greece,
Grapevine g/100 L
Spain, Italy, Switzerland
Germany
Grapevine kg/ha, differentiation according to growth stage
Norway
Fruit
Germany
Fruit
kg per m crown height and hectare
Switzerland
Fruit
kg or L per 10,000 m³ tree row volume
Belgium
Fruit
kg or L per 10,000 m² leaf wall area
kg per 100 m row length
71
72
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
published the present dose units established in European countries for any kind
of PPP application and lists the different
possibilities for high crops without any
preference or recommendation (EPPO,
2005).
Discussion and harmonisation in European registration procedures is necessary
in order to improve mutual data exchange
for PPP registration and ensure complete
and identical information for growers.
Crop-adapted dosing of agrochemicals,
i.e. dose adjustment, is discussed in many
publications (Siegfried et al., 1995;
Walklate et al., 2003; Furness, 2003;
Godyn et al., 2005; Gil et al., 2005; Viret
et al., 2005). These authors focus on the
question how to adjust the product quantity to different canopy sizes and crop
densities. The work is based on the concept that foliar application must result in
similar deposits independent of crop size
or canopy density. Dose expression models based on different dose units may lead
to varying results and complicate dose
adjustments. A consistent and generally
applicable dose expression model requires the use of a single and distinct
dose unit.
It is necessary to discuss and deal with
dose expression and dose adjustment as
two related but distinct issues (see Frießleben et al., this issue, page 85). The focus
of this paper is on the dose unit and a common dose expression model, while dose
adjustment, i.e. the determination of a cropadjusted dose, will not be considered.
2 From hand held spray lances to
machine operated sprayers
Over a very long period PPPs were applied with hand held spray lances delivering a large spray volume, often beyond
run-off. Dosing was in the form of a
spray concentration and the label stipulated the quantity of the product required
to prepare a certain concentration (%) in
100 L of water. The delivered spray volume was not considered or limited,
meaning that the achieved hectare-rate
was the result of the application and the
individual behaviour of the person spraying. The maximum initial deposit of the
applied PPP on the plant surface was directly related to the retention capacity of
plants/leaves and the product concentration in the spray fluid (Koch and Weisser,
1998). It was limited by the retention capacity and the basic element to avoid
phytotoxic reactions. Ground losses due
to run-off from the canopy were not considered. The delivered spray volume and
chemical quantity was unpredictable and
depended very much on the operator and
in consequence could vary by more than
100 %.
Hand held spray lances are still in use, although today the majority of orchards
and vineyards are sprayed with machine
operated air blast sprayers.
There are four major reasons why the
spray concentration is not the appropriate
dose form:
1. The applied water volume is far below
the point of run-off and water is considered as the carrier for the product.
2. Reduction of the water volume means
an increase in the concentration of the
product in order to maintain the quantity at the original level. This shows
that the concentration is no longer relevant as a dosing factor.
3. If machine operated sprayers are used,
the water volume and the quantity of
the product must be determined prior
to the application. The sprayer must be
calibrated.
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
4. A concentration does not comply with
the definition of a dose as it does not
relate the quantity to a treated unit.
3 Sprayer function – the calibration
formula
The key to the appropriate dose expression is the sprayer function which ensures delivery and distribution of a certain volume of spray liquid. In vineyards
Water volume (L/10 000 m²) =
and fruit plantations spraying machines
are used. They have to be adjusted before
application by checking flow rate and
travel speed in relation to the intended
spray volume. These dosing factors are
described in the algorithm of the calibration formula.
Any machine operated sprayer works according to the algorithm of the calibration formula (BBA, 2005):
nozzle flow rate (L/min) × number of nozzles × 600
working width (m) × travel speed (km/h)
This algorithm describes the functional
principle of sprayers and is the mathematical background of spray computers.
The factor 600 is needed to convert the
different units. The formula must be in
equilibrium for each single nozzle (Koch
and Spieles, 1990; Koch et al., 1998) as
well as for a spray boom as a whole. It is
Fig. 1: The treated area is the virtual area defined as spraying height (see arrow) multiplied by
spraying length (the distance travelled by the sprayer). It is independent of the presence or
absence of a canopy.
73
74
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
important to keep in mind that sprayers
are calibrated and adjusted in absence of
targets which shows the principle of indirect dosing in plant protection (Koch,
2005a).
The rationale of the calibration formula is
the relation of the spray volume to the
area of 10,000 m² which is called the
treated area (Koch, 2005b; Frießleben and
Koch, 2005; Frießleben and Koch, 2006).
The delivery and dosing process is independent of the presence of targets or a
canopy, which is apparent when we consider that a sprayer does the same delivery work with or with out plants (Fig. 1).
The virtual plane of 10,000 m² is the area
parameter in the calibration formula. It is
defined as the area that is over-sprayed
by working nozzles and oriented between
working nozzles and targets.
Dosing in this sense comprises solely the
delivery process which has to be considered apart from the processes of droplet
transportation and particle distribution.
The calibration formula applies independent of air assistance which of course
would have an influence on these
processes.
4 Definition of “treated area”
As explained before, agrochemicals delivered with spraying machines are not
dosed to individual plants or leaves but to
a virtual treated area of 10,000 m². We
need to keep in mind that the treated area
is defined as the area between working
nozzles and targets. In the situation of
broadcast field spraying this area is identical to the hectare ground area. In many
other situations the difference between
ground area and treated area is easy to
demonstrate.
Band spraying (herbicides in sugar beet
or orchards) is clearly not an application
to the total hectare ground area, but just
to a certain portion of it, revealing the
difference between ground area and
treated area. The working nozzles define
the over-sprayed area. In the same way
sensor-equipped sprayers illustrate that
the treated area is defined by the area that
is covered by working nozzles (Fig. 1
and 2). Sensor sprayers illustrate the principle: one nozzle – one band (Koch and
Weisser, 2000). Each nozzle is aligned to
a sprayed band or a distinct sector of the
Fig. 2: Sensor-equipped sprayer for high crops demonstrating the sprayed band for each single
nozzle: Treated area without sensor function is row length × canopy heigth (m²). Treated area
with sensor function is reduced by sectors where the nozzles are closed.
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
treated area. In other words, the calibration formula applies for the individual
nozzle as well as for the nozzle boom.
Orchard and vineyard geometry is characterised by a fruit wall (Morgan, 1981)
with application systems where the application is not directed to the ground but
more or less horizontal or even upwards.
The working nozzles overspray a vertically oriented plane defined by row
length and spray swath height.
The calibration formula does not contain
any requirements about the orientation of
nozzles and the spraying direction. This
allows the interpretation that the sprayed
area may be a horizontally oriented area
as in the field sprayer situation or a vertically oriented area as in high crops.
The following aspects show why the
treated area is the relevant reference unit:
• Different row distance means different
ground area per unit row and results in
varying PPP quantities per unit row
when constant rates per hectare are
assumed.
• Row distance in grapevine usually
varies between 1.60 m to more than
3 m, outlining the variation of spray
time in a plantation (Fig. 3 and Tab. 2).
In the Champagne, France, row distance can be as little as 1 m.
• In vineyards grown on bench terraces
with rows on contour lines the ground
area is difficult to determine (Fig. 3).
• A constant rate per hectare does not
consider the variability of row distance and row length per hectare.
• There is a relation between delivered
product quantity per 10,000 m² treated
area and mean deposits (ng/cm²)
(Fig. 4).
Fig. 3: Different row distances in vineyards (here examples from the Middle Rhine Valley, Germany) demonstrate the variation of row length and spray time per hectare ground area. The
ground area of vineyards planted on bench terraces is a further aspect of row length variation.
75
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
76
Table 2: Relation between row distance, spray time and spray volumes per hectare
ground area in vineyards. Spray volume per hectare varies, but remains constant in
relation to the leaf wall area (LWA).
a
Row
distance
(m)
Row
length/ha
(m)
Spray
time/ha
(min)
Spray
volume
(L/ha)
1.7
1.8
2.0
2.2
3.0
5.800
5.500
5.000
4.500
3.000
58
55
50
45
30
421
400
363
327
218
Spray
Leaf wall area,
volume
both sides
(L/10,000 m²
(m²/ha)
LWA) a
6.960
6.600
6.000
5.400
3.600
605
606
605
605
605
the leaf wall is located between 80 and 200 cm above ground
2.5
Mean
90th percentile
10th percentile
Initial deposit (ng/cm²)
2.0
1.5
1.0
0.5
0
0
50
100
150
200
250
300
350
400
450
500
550
600
650
Delivered dose rate (g/10,000 m² leaf wall area)
Fig. 4: Relation between delivered dose rate (expressed in g/10,000 m² leaf wall area) and
initial deposit (ng/cm²) on the lower leaf side of grapevines (26 deposit measurements). Regression lines represent the 10th and the 90th percentile and the mean of 120 individual leaf
deposits per measurement.
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
This demonstrates: Row length is the relevant factor for travel distance and spray
time, explaining varying product quantities per hectare ground area for crops of
the same height. Row length and canopy
height define the treated area (10,000 m²
in the calibration formula).
5 Relation between product quantity (kg/10,000 m² treated area) and
spray deposit (ng/cm² leaf surface)
Measurements of deposits on the lower
leaf side of grapevines are influenced by,
among other things, plant variety, growth
stage, and weather conditions, and are
therefore highly variable, but a linear relation can be demonstrated between the
product delivered per 10,000 m² treated
area (leaf wall area) and measured deposits on leaves, expressed in ng/cm²
(Fig. 4). The slope of the regression depends on the target-specific retention
behaviour. The same relation can be observed in apple orchards (Koch and
Weisser, 1995).
treated area and resulting deposits in corresponding height zones which form the
vertical overall distribution pattern.
Single nozzle distribution measurements
in orchards show that a uniform vertical
distribution profile is the result of appropriate nozzle orientation (Koch et al.,
1998) over the leaf wall extension. The
vertical profiles in Fig. 5 show initial deposits on leaves over the canopy height
between 50 and 180 cm above ground.
On the left, the product quantity delivered to the upper leaf zone (120-180 cm)
is much higher than in the grape zone
(50-100 cm). This profile is the result of
wrong nozzle orientation. With appropriate nozzle orientation, a uniform deposition targeted to the leaf wall height can
be obtained (Fig. 5B).
This example explains the dosing principle and illustrates that the product
quantity delivered to a distinct canopy
zone (expressed as kg/10,000 m²) subsequently determines the deposition
(ng/cm²) in this zone.
7 Discussion
6 The vertical distribution profile
over leaf wall height
The explained concept relates the delivered
dose to the treated area (kg/10,000 m²).
The quantity of product which passes the
treated area at a given position determines the deposits on targets behind the
treated area (ng/cm²) as shown in Fig. 4.
The calibration formula applies for a
single nozzle as well as for the nozzle
boom as a whole. Each nozzle covers a
sprayed band and the vertical distribution
pattern is composed of the bands created
by the working nozzles. Sprayer configuration, here nozzle position and nozzle
size, affect the delivered dose passing the
Dose expression means the format of the
product dose and does not consider the
crop adapted determination of the product quantity.
In Europe the PPP dose in high crops is
expressed in different formats, using parameters such as product weight, spray
liquid volume, row length, crown height,
tree row volume or leaf wall area (see
Table 1). This leads to confusion in testing, registration, label information and
application.
Problems arise from the relation of spray
liquid volume, product quantity and
ground area. The required dose in relation to the ground area is calculated and
77
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
A
B
180
Top zone
160
140
120
100
Grape zone
Height (cm above ground)
78
80
60
40
Mean
Sprayer side
Opposite side
Left side of leaf wall
Right side of leaf wall
20
0
0
10
20
30
40
50
60
70
80
90
0
10
20
30
40
50
60
70
80
90
Leaf deposit as a fraction of the dose applied to 10,000 m² leaf wall area (%)
Fig. 5: Examples of vertical distribution profiles in grapevines demonstrating different levels of
deposition as a result of different doses per 10,000 m² in corresponding height zones. Each
dot represents a single leaf. Solid lines represent the running mean over height. A: Wrong
nozzle orientation; more product is delivered to the upper leaf zone than to the grape zone.
B: Correct nozzle orientation.
used in field tests which usually are single row applications. The ground area is
identified as treated row length multiplied with the row distance. While the
row length determines spray time and delivered spray volume, the row distance is
the most relevant factor for the application of PPP, because its variation leads to
an altered product quantity. But in today’s orchard or vineyard applications
the row distance is not considered.
In different structured plantations constant dose rates per hectare ground area
cannot result in constant deposits without
re-adjusting the sprayer, especially the
travelling speed and flow rate. The prevailing type of application of agrochemicals in Europe is foliar spray application.
Spraying machines work according to the
calibration formula and deliver the spray
liquid to an area, called the treated area,
which is defined as the virtual area between working nozzles and targets.
Hence, the dosing process is an indirect
process. Sprayers deliver the spray liquid
containing the product to the treated area.
Deposits on targets behind this treated
area depend on the quantity of product
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
passing the treated area at each position.
Uniform distribution at any position of
the treated area is needed in order to
achieve homogeneous deposits.
Consequently, the volume of the spray
liquid and product quantity should not be
related to the ground area (expressed as
kg or L/ha ground area) but to the leaf
wall (kg or L/10,000 m² leaf wall area).
Sprayer calibration and adjustment covers the determination of flow rate including nozzle selection, pressure adjustment
and determination of travel velocity and
working height for high crops.
The introduction of the treated area related dose form would offer the following advantages:
• A dose form which expresses the product quantity (in kg or L) in relation to
the treated area (10,000 m²) would be
consistent with any kind of spray application. It would apply to broadcast
field spraying as well as to herbicide
band spraying and to high crops as explained above. It would even be applicable in grapevine training systems
like the pergola, where the crop is
overhead and which is typical in
Southern Tyrol, Italy.
• The treated area oriented dose form
recognises the necessities of sprayer
function and sprayer calibration documented in the algorithm of the calibration formula.
• It would allow a better exchange of data
between EU member states. This aspect
is of major importance with respect to
expected EU regulations on mutual
recognition of PPP authorisation.
• It would allow a clear dose determination in single row situations as typical
in PPP testing, like efficacy and
residue trials or field tests on side effects on beneficial organisms.
• It would allow growers to calibrate and
adjust their sprayer consistent with
product label instructions.
• Growers would be able to compare
their application results.
• The advantage of standardised data
leaves open any kind of necessary
crop adjusted dose determination with
respect to biological efficacy.
Within the registration process the hectare
ground area is established as a general
reference unit. At present any dose/effect
interpretation, analysis of residues, fate,
risk, etc. is based on the quantity of active
ingredient applied per hectare. It is necessary to ensure a link between the
treated area related dose form needed for
the professional user and the traditional
ground area related dose form which is
needed for authorisation purposes.
A change from hectare rates to leaf wall
rates would not cause problems in the
decision making because it is easy to recalculate data from one dose form into
the other one when the parameters row
length per hectare and leaf wall height
are documented.
Considering the variation of relevant parameters of vineyard geometry (row
length, canopy height) a constant hectare
rate is not appropriate. Using constant
hectare rates principally results in different deposits and effects. The proposed
treated area related dose form offers consistency in PPP authorisation and agriculture.
In field trials at present the product quantity is calculated in relation to the ground
area which guarantees constant hectare
rates independent of the variation of row
distance and row length per ha. Depending on the row distance different quantities of the tested PPP are applied to a single row which leads to different deposits
79
80
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
(ng/cm² leaf surface) as shown in Fig. 4.
Growers treat vineyards, varying in row
distance, without adapting travel speed
and flow rate. This practice results in
varying hectare rates but causes similar
deposits as is concluded from the dosedeposit relation explained in Fig. 4.
This evident difference could be solved
by introducing the leaf wall related dose
form. Future label instructions should
provide growers with the following information:
• Registered product quantity, e.g. 1 kg/
10,000 m² treated area or leaf wall
area.
• Range of recommended water volume,
e.g. 200 to 400 L/10,000 m² treated
area or leaf wall area.
Belgium has already converted the dose
expression of PPP used in fruit production into kg or L/10,000 m² leaf wall area.
More information can be obtained at
www.phytoweb/fgov.be.
8 Summary
How to achieve conformity with the dose
expression and sprayer function in high
crops
In plant protection, a dose indicates a
specific quantity or amount of a crop protectant. Dose expression means the unit
in which this dose is expressed. For plant
protection products which are authorised
in European countries, different units are
used in high crops such as: kg/ha, g/100 L,
kg per 100 m row length, kg per meter
crown height and ha, kg/ha adjusted with
respect to growth stage, kg/10,000 m² leaf
wall area or kg per unit tree row volume.
It is proposed to harmonise the dose expression in accordance with sprayer
function. The basic algorithm of the
function of spraying machines is the cali-
bration formula, demonstrating the indirect dosing process in plant protection.
The sprayer delivers a certain volume of
spray liquid to the so-called treated area,
whereby sprayer function is expressed as
L/10,000 m². The product quantity does
not affect this process. The treated area is
the virtual area between working nozzles
and the canopy. The initial deposit on targets behind the treated area is correlated
to the quantity of product passing the
treated area. It would be consequential to
define the dose unit for plant protection
products in the same way and determine
it as kg or L/10,000 m².
Belgium has already converted the dose
expression for products registered for orchards to the leaf wall area model. Standardization would improve the mutual
recognition of data between registration
authorities and presents an opportunity to
improve and achieve a more efficient interpretation of test results and commercial applications. A standardised dose expression is a prerequisite for a sound and
crop-adapted dose determination. This
applies to the investigation of efficacy
and residues as well as professional fruit
and grapevine production.
Zusammenfassung
Wie kann die Dosiervorgabe in Raumkulturen in Übereinstimmung mit der Sprühgerätefunktion gebracht werden
Im Pflanzenschutz meint der Begriff
Dosis, oder Aufwandmenge, eine genaue
Menge eines Pflanzenschutzmittels. Die
Dosiervorgabe ist die Einheit, in der diese
Dosis angegeben wird. Für Pflanzenschutzmittel, die in Europa in Raumkulturen zugelassen sind, werden sehr unterschiedliche Dosiervorgaben verwendet,
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
z. B. kg/ha, g/100 l, kg pro 100 m
Reihenlänge, kg pro Meter Kronenhöhe
und ha, kg/ha angepasst an Wachstumsstadien, kg/10.000 m² Laubwand oder kg
bezogen auf das Kronenvolumen.
Es wird vorgeschlagen, Dosiervorgaben
zu vereinheitlichen. Als Grundlage wird
die Gerätefunktion gesehen, die im Algorithmus der Dosiergleichung beschrieben
ist und das Prinzip der indirekten Dosierung im Pflanzenschutz verdeutlicht.
Pflanzenschutzgeräte bringen Spritzflüssigkeit auf die behandelte Fläche aus. Die
Gerätefunktion wird in l/10.000 m² angegeben. Für diesen Prozess ist die Produktmenge unerheblich. Die behandelte
Fläche ist die gedachte Fläche zwischen
den geöffneten Düsen und dem Bestand.
Der Initialbelag auf den Zielobjekten ist
abhängig von der Stoffmenge, die die Behandlungsfläche durchtritt. Konsequenterweise sollte man die Dosiervorgaben
bei Pflanzenschutzmitteln in gleicher
Weise definieren und sie in kg oder l/
10.000 m² ausdrücken.
Belgien hat die Dosiervorgabe für Produkte im Obstbau bereits auf das Laubwandflächenmodell umgestellt. Eine
Vereinheitlichung würde den Datenaustausch zwischen Zulassungsbehörden
verbessern. Versuchsergebnisse und gewerbsmäßige Anwendungen könnten
wesentlich besser verglichen werden. In
diesem Sinne ist eine einheitliche Dosiervorgabe eine Voraussetzung für ein fundiertes Dosiermodell, mit dem man die
tatsächlich in einer Behandlungssituation
erforderliche Präparatemenge bestimmen
kann. Das gilt gleichermaßen für das Versuchswesen bzw. die Mittelprüfung im
Rahmen der Untersuchung von Wirksamkeit und Rückständen, wie auch insbesondere in der Praxis des Obst- und
Weinbaus.
Résumé
Comment obtenir la conformité au niveau
de l’expression des doses et de la fonction
des pulvérisateurs dans les cultures hautes
En protection des plantes, une dose indique une quantité spécifique d’un agent
protecteur des cultures. Par expression
des doses, on entend l’unité dans laquelle
cette dose est exprimée. En ce qui
concerne les produits de protection des
plantes dont l’usage est autorisé dans les
pays européens, on se sert d’unités différentes telles que: kg/ha, g/100 l, kg par
rangée d’une longueur de 100 m, kg par
mètre de hauteur de cime d’arbre et par
ha, kg/ha ajusté en fonction du stade de
croissance atteint, l/10.000 m² de surface
de parois foliaires ou kg par volume unitaire de rangées d’arbres.
Il est proposé d’harmoniser l’expression
des doses selon la fonction des pulvérisateurs. L’algorithme fondamental de la
fonction des pulvérisateurs est la formule
d’étalonnage, démontrant le procédé du
dosage indirect dans la protection des
plantes. Le pulvérisateur distribue un certain volume de liquide à pulvériser sur la
zone dite traitée, alors que la fonction du
pulvérisateur est exprimée en l/10.000 m².
La quantité de produit n’affecte pas ce
procédé. La zone traitée est la zone virtuelle entre les jets en action et la cabine.
Le dépôt initial sur les cibles, derrière la
zone traitée, est lié à la quantité de produit traversant la zone traitée. Il serait
conséquent de définir l’unité des doses
pour les produits de protection des
plantes de la même manière et de la déterminer en kg ou en l/10.000 m².
La Belgique a déjà converti l’expression
des doses selon le modèle de la surface
des parois foliaires pour les produits homologués pour les vergers. La normalisa-
81
82
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
tion devrait améliorer la reconnaissance
mutuelle des données entre les autorités
chargées de l’homologation; en outre,
elle offre la possibilité d’améliorer et
d’obtenir une interprétation plus efficace
des résultats des tests et des applications
commerciales. Une expression normalisée des doses est une condition requise
pour une détermination des doses fiable
et adaptée aux cultures. Cela s’applique à
la recherche de l’efficacité et des résidus
tout aussi bien qu’à la production professionnelle des fruits et des vignes.
Resumen
Cómo lograr conformidad con la expresión
de dosis y función del aspersor en cultivos
altos
En protección de plantas, la dosis indica
una cantidad específica de un protector
de cultivo. La expresión de dosis significa la unidad en que esta dosis está expresada. Para los productos de protección
de plantas que están autorizados en países europeos, se usan diferentes unidades
en cultivos altos, tales como: kg/ha,
g/100 l, kg por 100 m de surco, kg por
metro de altura de copa y ha, kg/ha ajustado en función al estadio de crecimiento,
l/10,000 m² de área de muro foliar o
kg por unidad de volumen de surco de
arbol.
Se propone armonizar la expresión de
dosis en acuerdo con la función del aspersor. El algoritmo básico de la función
de las máquinas de aspersión es la fórmula de calibración, demostrando el proceso indirecto de dosificación en la protección de plantas. El aspersor entrega
cierto volumen de caldo al tal llamado
área tratada, donde la función del aspersor es expresada como l/10,000 m². La
cantidad de producto no afecta a este pro-
ceso. El área tratada es el área virtual
entre las boquillas activas y la canopia. El
depósito inicial sobre objetivos detrás del
área tratada se correlaciona a la cantidad
de producto que pasa por el área tratada.
Sería consecuencial definir la unidad de
dosis para productos de protección de
plantas en la misma forma y determinarla
en kg o l/10,000 m².
Bélgica ya ha convertido la expresión de
dosis para productos registrados para frutales al modelo de área de muro foliar. La
standardización mejoraría el reconocimiento mutuo de datos entre las autoridades de registro y presenta una oportunidad para mejorar y obtener una interpretación más eficiente de los resultados de
ensayo y de aplicaciones comerciales.
Una expresión standardizada de dosis es
un prerequisito para una determinación
de dosis sana y adaptada al cultivo. Esto
vale tanto para la investigación de eficacia y residuos como para la producción
profesional de frutas y uvas.
Резюме
Как привести указание по норме
расхода в пространственных культурах
в соответствие с функцией устройства
для опрыскивания
В области защиты растений под дозой
или нормой расхода понимают точное
удельное количество средства защиты
растений. Для средств защиты растений, допущенных в Европе к применению в пространственных культурах,
оно указывается в весьма разных
единицах измерения, например, кг/га,
г/100 л, кг на 100 м длины ряда, кг на м
высоты кроны и га, кг/га в увязке со
стадиями развития растения, кг/10000
м2 лиственной стены или кг на объем
кроны.
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
Предлагается унификация единиц измерения норм расхода. В качестве основы принимается функция устройства для опрыскивания, которая описывается в алгоритме уравнения дозировки и выражает принцип косвенной
дозировки в защите растений. Устройствами для опрыскивания раствор
препарата наносится на обрабатываемую поверхность. Функция этого
устройства указывается в л/10000 м2.
Количество продукта не имеет существенного значения для данного
процесса. Обрабатываемая поверхность равна воображаемой поверхности между открытыми соплами и
растениями. Первоначальный осадок
препарата на целевых объектах зависит от количества вещества, проходящего через обрабатываемую поверхность. При последовательном подходе
нормы расхода средств защиты
растений следовало бы определять
единым образом, выражая их в кг или
л на 10000 м2.
Бельгия уже перевела нормы расхода препаратов в плодоводстве на
модель лиственной стены. Унификация способствовала бы обмену
информацией между органами по
лицензированию, обеспечивалось бы
существенное улучшение сопоставления
опытных
результатов,
хозяйственных аппликаций. В этом
смысле единая единица измерения
нормы расхода является предпосылкой для обоснованной дозировочной
модели, позволяющей определение
фактического количества препарата,
требуемого в конкретной ситуации
обработки. Это имеет большое значение как для опытных работ и испытания средств в рамках исследования действующих веществ и ос-
татков, так и в практике плодовод-ства
и виноградарстве.
9 References
BBA (2005):
Guideline for sprayer adjustment – sprayers used in
vineyards (in German)
http://www.bba.bund.de/cln_044/nn_925828/Share
dDocs/10_FA/Publikationen/Pflanzenschutzgeraete/forschung/handhabungspruehgeraeteweinbau_
pdf.html
EPPO (2005):
Efficacy evaluation of plant protection products.
Dose expression for plant protection products
EPPO Bulletin 35, 563-566
Frießleben, R., Koch, H. (2005):
Dose expression in plant protection product field
testing in high crops – need for harmonisation
Book of Abstracts 8th Workshop on Spray Application Techniques in Fruit Growing, Barcelona, 31-32
Frießleben, R., Koch, H. (2006):
The need for international harmonization of dose
rate expression in high crops with a special focus on
viticulture (in German)
Mitt. Biol. Bundesanstalt für Land- und Forstwirtschaft, 400, 167
Furness, G. O. (2003):
Distance calibration and a new pesticide label format for fruit trees and grapevines in Australia
Proceedings of the 7th workshop on spray application techniques in fruit growing, Cuneo, 29-297
Gil, E., Escobar, C., Planas, S., de Miquel, E. (2005):
Pesticide dose adjustment in vineyard: Relationship
between crop characteristics and quality of the application
Book of Abstracts, 8th workshop on spray application techniques in fruit growing, Barcelona, 19-20
Godyn, A., Durochoski, G., Holownicki, R.,
Swiechowski, W. (2005):
A method of verification of spray volume to crop
structure
Book of Abstracts, 8th workshop on spray application techniques in fruit growing, Barcelona, 11-13
Koch, H. (2005a):
Indirect dosing – fundamental principle in pesticide
application
Book of Abstracts 8th Workshop on spray application techniques in fruit growing, Barcelona, 27-30
83
84
Pflanzenschutz-Nachrichten Bayer 60/2007, 1
Koch, H. (2005b):
Single nozzle behaviour, sprayer function and unit of
water volume and product dose in orchard spraying
Annual Review of Agricultural Engineering of the
Polish Academy of Sciences 4/1, 159-168
Koch, H., Weisser, P. (2000):
Sensor-equipped orchard spraying – efficacy, savings and drift reduction
Aspects of Appl. Biol. 57, 357-362
Koch, H., Weisser, P. (1998):
Quantitative aspects of spray fluid retention
Proc. IUPAC, 2D 024, IUPAC, 3.-7.8.1998, London
Koch, H., Weisser, P. (1995):
Principal aspects of spray liquid retention and initial
deposit formation on targets in plant protection (in
German)
Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 102, 203-210.
Koch, H., Weisser, P., Funke, H.-G., Knewitz, H.
(1998):
Characteristic of the distribution pattern of single
nozzles in air assisted orchard spraying (in German)
Nachrichtenblatt Deut. Pflanzenschutzd. 50, 30-36
Manuscript received: January 23rd, 2007
Koch, H., Spieles, M. (1990):
Dosing of Plant Protection Products in fruit production with respect to training systems (in German)
Erwerbsobstbau 32, 141-147
Morgan, N. (1981):
Minimising pesticide waste in orchard spraying
Outlook on Agriculture 10, 342-344
Siegfried, W., Holliger, E., Raisigl, U. (1995):
Eine neue Methode zur Bestimmung der Brühe- und
Präparatemengen im Obstbau (in German)
Schweiz. Z. Obst-Weinbau, Heft 6/95, 144-147
Viret, O., Siegfried, W., Wohlhauser, R. (2005):
Crop adapted spraying in viticulture. Leaf volume
dependant fungicide dosage for a precise and ecological application
Book of Abstracts, 8th workshop on spray application techniques in fruit growing, Barcelona, 23-26
Walklate, P. J., Cross, J. V., Richardson, G. M.,
Baker, D. E., Murray, R. A. (2003):
A generic model of pesticide dose expression: Application to broadcast spraying apple trees
Annals of Applied Biology 143, 11-23
Dr. Heribert Koch
e-mail: [email protected]
Dienstleistungszentrum Ländlicher
Raum
Rheinhessen-Nahe-Hunsrück
Rüdesheimerstr. 68
D-55545 Bad Kreuznach
Germany