FD-method for solving nonlinear Sturm-Liouville problems with distribution potentials 6-th Europian Congress of Mathematics Denys V. Dragunov ([email protected]) Krakow, Poland July, 2-7 Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine 1. What is the problem? 3.The FD approach in general 4. Getting back to the SLP We consider the following nonlinear SturmLiouville problem (SLP): (N [u(x)]+λ)u(x) = Let us denote by L(H) the space of linear operators acting on a Hilbert space H. We replace the initial eigenvalue problem (EVP) To apply the FD approach to SLP (1)–(5) we assume that H = L2 (0, 1), D = {u ∈ D|u′ (0) = 1}, d2 u(x) − Q(x) + N (u(x)) − λ u(x) = 0, (1) = dx2 def u(x) ∈ D(N [·]) = D = u| u, u ˜ ∈ W21 (0, 1), x R u ˜ = u′− Q(ξ)dξu, u(0) = u(1) = 0 , u′(0) = 1, (2) 0 Nδ P Q(x) = i=1 βi δ(x − αi ) + q(x), αi ∈ (0, 1), (3) βi ≥ 0, x ∈ (0, 1)\{α1, α2 , . . . , αNδ }, (4) ∞ P ap up , ∀u ∈ R, q(x) ∈ L1 (0, 1), (5) N (u) = N [u]u + λu = 0, τ ∈ [0, 1], M[·] : D → L(H), M[·] ∈ C∞ (D), where M[·] “approximates” N [·] (in some sense). Assuming that problem (7) is solvable and u(τ ) = ∞ P (i) u τ i , λ(τ ) = i=0 Simple Matrix Methods; Variational Methods; Shooting and Profer Methods;Pruess Methods (see [2]) Piecewise Perturbation Methods (see [4]); Functional-Discrete Methods ∞ P i=0 lim k¯ qω (x, h) − q(x)k1 = 0, h = max (xi −xi−1 ). h→0 (i) i τ λ , τ ∈ [0, 1], (0) 2u d (0) (0) (0) (x) −(¯ qω (x)+N ([ u(x)]ω )−λ ) u(x) = 0, (11) 2 dx αi +0 (0) (0)′ (0) (0) (0)′ u (x)α −0 = βi u(αi ), u(0) = u(1) = 0, u (0) = 1, i (k) (k) unknown u and λ can be found as solutions to the basic problem (which is supposed to be “easier” then the initial problem (6)) (0)(0) u∈D M[ u ] u + λ u = 0, whereas system (9) transforms into a recurrence system of linear BVPs (with parameters) (8) (k) 2u d (0) (k) (0) (x) u u −(¯ q (x)+N ([ (x)] )− ) (x) = (12) λ ω ω 2 dx k (j)(k−j) P (p) = Aj (N (·); [ u(x)]ω , p = 0, j)−λ u (x)− and the system of linear recurrence equations (k) (i) (i) Φ 0( u , λ , i Analytical methods = 0, k) = ∞ (i) ∞ (i) dk P P i i u τ , = kΦ = 0. λ τ dτ τ =0 i=0 i=0 Variational Iteration and Hmotopy Perturbation Methods (see [3]); Adomian Decomposition Method (see [5]); j=1 (k−1−j) (9) (k) find λ from the orthogonality condition E D(0) (k) (i) (i) u , Φ 0( u , λ , i = 0, k) = 0. j X d p vp τ ) . Aj (N (·); vp , p = 0, j) = j N ( dτ τ =0 p=0 Conjecture 1. Suppose that the pair hun (x), λn i is a solution to SLP (1)–(5). Then for a sufficiently small h there exists (13) which has been proved to have a unique solution µ = µn on each interval [πn, π(n + 1)), n ∈ N. Once µn is computed we can find the solutions to the basic problem (11) and BVPs (12) via the formulas x (k) R ( Sn (x−ξ)Fn(ξ)dξ, x ∈ [0, α1 ] , S (x)/µ , x ∈ [0, α ] , (0) (k) n n 1 un(x)= (0) un (x) = 0 1 (k) R (k) cnSn (x−1), x ∈ (α1 , 1] , cn Sn (1−x)− Sn (x−ξ)Fn(ξ)dξ, x ∈ (α1 , 1] , λn = 3 (0) ′ ′ cn= µn Sn (1)+β1 Sn (α1 )Sn (1−α1) /µn , Sn (x) = sin(µn x), k (j) (k−j) P (k) R1 (k) cn Sn (1−α1 ) = Sn (α1 −ξ)Fn(ξ)dξ, 0 (k) cn Sn′ (1−α1 ) α R1 (k) R1 (14) |λn − m m kun (x)− un(x)k∞ = O(am+1 rnm+1 ), |λn − λn | = O(am+1 rnm ), (15) (k) (k) √ where am = 1/((2m − 1) πm) and the pairs hun(x), λn i are computed according to formulas (14). p Theorem 2. Suppose that Nδ = 1 and rn = (1+ 1+(1+β1/µn )2 /(µn Rn ) < 1, where Rn > 0 denotes ∞ P z j v¯j that satisfies the functional equation the convergence radius of the power series f (z) = j=1 2 (0) ′ e1 (f (z))+ N e1 (0)v 0,n − N e1 (0) , N e1 (u) = N e (u+k unk∞ ), f (z) = f (z) +z(1+v0,n ) kqk1 f (z)+v0,n + N ∞ P e (u) = N |ap |up+1 . Then asymptotical equalities (15) holds true with am = 1/mε for some ε > 0. k=0 m (k) P λn| = O k=0 [1] A. M. Savchuk, A. A. Shkalikov, On the eigenvalues of the SturmLiouville operator with potentials in Sobolev spaces, Mat. Zametki,V.80, 6, P.864–884. [2] J.D. Pryce, Numerical solution of Sturm-Liouville problems, Monographs on Numerical Analysis, New York, 1993, p. xiv+322. [3] A. Neamaty and R. Darzi,Comparison between the variational iteration method and the homotopy perturbation method for the Sturm-Liouville differential equation, Bound. Value Probl. 2010. [4] V. Ledoux, M. Van Daele, On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation, Z. Angew. Math. Phys., V.62, 6, P.993–1011. [5] S. Somali, G. Gokmen, Adomian decomposition method for nonlinear Sturm-Liouville problems, Surv. Math. Appl., V.2, P.11–20. [6] V. Seng, K. Abbaoui, Y. Cherruault, Adomian’s Polynomials for Nonlinear Operators, Math. Comput. Modelling, V.24, 1, P.59–65. [7] V. Makarov, N. Rossokhata, D. Dragunov, Exponentially convergent functional-discrete method for solving SLPs with potentials that include the Dirac δ-function. arXiv:1112.2540v1. I want to acknowledge with thanks the support of my academic father Prof. Volodymyr Makarov, whose brilliant mind and mathematical intuition I will always admire. 6. “I must at once [. . . ] make you a witness of the things we’ve told you.” u3(x) u’1(x) - - -5 r -15 -10 where H(x) denotes the Heaviside function. The numerical data presented in the table below and on the figures to the right were obtained via a C++ implementation of the algorithm that is available at www.sourceforge.net/projects/imathsoft/files/. -25 -20 n 1 2 3 4 5 m 10 10 10 10 10 m λn 23.437363200234028176 50.879953432153777724 102.294039773949565868 167.932111361326104363 261.703789042290324125 k (m) un (x)k∞ 1.5e-11 7.5e-12 3.0e-13 2.2e-16 2.5e-17 (m) | λn | 7.6e-10 2.4e-10 5.7e-11 1.2e-13 6.8e-16 m ρn 2.5e-11 2.0e-11 1.9e-13 1.1e-16 3.3e-17 n 6 7 8 9 10 m 10 10 10 10 10 u3’(x) u3’(x) 0 0 u3(x) - 8 and N (u) = u . Since the exact eigensolutions to this problem are unknown to estimate the approximation errors we will use the functional i ξ h 1 (m) R R m m m m d un(ξ) q(ξ1 ) −λn + N (un(ξ1 )) un(ξ1 ) dξ1 dξ, ρn = 1 − dξ + H(ξ − α1 )β1un(α1 ) + (J.B.Moliere, Tartuffe.) u1(x) 8 m rn m+1 , η(h) = max{h, kqω −qk1 }, 8. Acknowledgements p=1 Let us apply the algorithm described by formulas (13), (14) to SLP (1), (2) with Nδ = 1, p p p p α1 = 1/2, β1 = 2, q(x) = 1/ |0.7 − x| + 1/ |0.1 − x| + 1/ |0.3 − x| + 1/ |0.4 − 2x|, (k) (k) hun (x), λn i, 7. References (k) m (k) m (k) m P P m un(x) = un(x), λn = λn , k=0 k=0 (x), λn i that satisfies EVP (11) where the constant θ is independent of h, n, m. Sn (ξ− α1 )Fn(ξ)dξ− Sn′ (α1 −ξ)Fn(ξ)dξ. 0 0 p Theorem 1. Suppose that Nδ = 1, N (u) ≡ 0 and rn = (1 + 1+(1+β1/µn )2 /(µn Rn ) < 1, where q (0) 2 (0)2 2 Rn = (1+2¯ v0,n −2 v¯0,n + v¯0,n )/((1 + v¯0,n )kqk1 ), v¯0,n = k unk∞ /k un k1 . Then = β1 (0) and uniquely determines the pairs k ∈ N that satisfy BVPs (12) and the following asymptotical equalities: m (k) m+1 P rn kun − unk∞ = O m+1 , rn = θη(h)/n, (k−1) (p) Fn(x) = q(x) un (x)− λn un (x)+Ak−1 (N1 (·); un(x), p = 0, k−1) /µn , N1 (u) = N (u)u, j=1 (k) k−1 R1 (0) P (j) (k−j) (0)2 (p) (k−1) λn = un(ξ) q(ξ) un (ξ)− λn un (ξ)+Ak−1 (N1 (·); un(ξ), p = 0, k−1) dξ/k un k1 j=1 0 (k) where parameters cn (k ∈ N) can be found from the following two linear equations: (k) (0) hun a pair x 2 µn , (k) j Let us consider a simple case when function Q(x) (3) has a unique δ-singularity on [0, 1] (Nδ = 1) and the operator M[·] is defined by formula (10) with q¯ω (x) ≡ 0, [·]ω ≡ 0, as it was done in [7]. In this case the basic problem (11) can be reduced to the nonlinear equation (0) j=0 (p) u (x) ∈ C[0, 1], u (x) ∈ C 1 [xi−1 , xi ], i = 1, K, k = 0, 1, . . . . Here Aj (·) denotes an Adomian polynomial of order j (see [6] for more detail): (A. Einstein) µ sin(µ) = −β1 sin(µα1 ) sin(µ(1 − α1 )), (p) Aj (N (·); [ u(x)]ω , p = 0, j)− (k) H 5. “. . . as simple as possible, but not simpler.” (x) k−1 P (k−1) −Aj (N (·); u (x), p = 0, j) +(q(x)−qω (x)) u (x), αi +0 (k)′ (k) (k) (k) (k)′ u (x)α −0 = βi u(αi ), u (0) = u (1) = u (0) = 0, i If M′ [ u ] = 0 and M[ u ] = M[ u ]∗ then we can Functional-Discrete Homotopy (FD) Methods (see ≈ Pruess + Perturbation Methods [7] and ref. therein) Methods u − (0) (0) (0) i=1,K Then (1)–(5) ⇔ (6) and we get the basic problem (8) in the form of an EVP we immediately get that u = u(1), λ = λ(1). The 2. Methods for solving SLPs Numerical-Analytical methods where ω = {0 = x0 < x1 < . . . < xK = 1}, K ∈ N, q¯ω (x) = q¯ω (x, h) = q¯i = const, [f (x)]ω = f (xi−1 ), ∀x ∈ [xi−1 , xi ), i = 1, K, ∀f (x) ∈ C[0, 1] and Φ(u(τ ), λ(τ )) = M[u(τ )]u(τ )+λ(τ )u(τ ) = (7) = τ (M[u(τ )]−N [u(τ )])u(τ ), u(τ ) ∈ D, (0) (0) Numerical methods (6) N [·] : D → L(H), N [·] ∈ C∞ (D) (quasi-differentiable by Dieudonne) with the perturbed one p=1 where δ(x) denotes the Dirac δ-function. Such problems are of great interest in quantum mechanics (see [1] and the references therein). In what follows we assume that k · k∞ is the Chebyshev norm on [0, 1] and that k · k1 denotes the norm from L1 (0, 1). u ∈ D ⊆ H, Nδ d2 P N [·] = 2 − βi δ(x−αi )−q(x)−N (·), dx i=1 Nδ d2 P M[·] = 2 − βi δ(x−αi )− q¯ω (x)−N([·]ω), (10) dx i=1 -10 -20 -30 -35 2 4 m 6 -30 m 8 10 λn 365.290665054662412777 497.311217072847814939 642.305601325675356973 813.233561353244869046 995.761252385458344653 2 k 4 6 (m) un (x)k∞ 1.5e-17 6.3e-19 6.7e-19 7.3e-21 3.7e-21 8 10 (m) | λn | 9.5e-16 1.2e-16 4.6e-17 1.7e-17 2.9e-18 m 2 4 6 m ρn 3.7e-18 1.1e-19 1.3e-19 9.1e-22 4.4e-22 8 10
© Copyright 2024