'Wavelets': what and why ? "!$# % &')( # %&')( +* &,-/. 1. The background error covariance matrix (background background) Bayes' theorem (Gaussian unbiased errors): P x\y P x P y\x 1 B B 1 P x x x T B x x 2 1 1 P y\x y h x T R y h x 2 B is the error covariance matrix The structure functions • The columns (or rows) of B • Bx does a convolution by the structure functions • Can be found in a single obs. test in Var.: analysis inc. x where K single obs. then y K y T y H T xl y R HxB K l1 HxB T BH HBH HBH R y y 2 1 y B 2 kk Blk Bkk Blk 1 2 0 0 0 0 1 0 0 0 Bkk 'Wavelets': what and why ? (1) kth element 2. How is B computed? A. Kalman filtering (1st choice) B t PA t t T t t Mt t PA t t Mt t Q t t I K t t H t t B t t Resolution 432 325 38 4 c.v. 216 163 38 4 c.v. 96 73 38 4 c.v. I ra p m Matrix elements 4 6 1014 2 9 1013 1 1 1012 ab c i t c le B. Estimate covariance statistics fully (2nd choice) B would like x settle for x I x x T x xt x48 x24 (NMC e.g.) ra p m ab c i t c le 'Wavelets': what and why ? (2) C. Background error covariance modelling (third choice) • • • • Manageable number of parameters Capture essential features only Accept approximations Exploit symmetries Assimilate using control parameters x Uv • Control parameters are uncorrelated, Bv v v T I • Covariance model contained inside transformation, U T B UU • Also helps to precondition the problem x -space v -space • Assume U has form U T z UpUvUh U 1 ThTvTp Tv Uv 'Wavelets': what and why ? Th Uh (3) l m 3. Implied covariances (for a given parameter) B Bp UU T 1/2 M HORIZONTAL 1/2 1 h Fh T UvUhUh Uv T-transform VERTICAL T Z U-transform Z 1M1/2 Fh 1/2 h UT -transform T M1/2 Z 1/2 T h Fh General assumptions/remarks: • Climatological error statistics used synoptically • Errors in parameters are uncorrelated • Horizontal structure functions are homogeneous and isotropic • Horizontal length scales independent of height • Order of transformations: • vertical covs. f , but f l m • horizontal covs. f , but f z (explicitly) • Implied structure functions are nearly separable • Bp 0 0 z z0 f r g z • (exactly separable if Uv independent of horiz. pos.) • Problems in capturing tropopause height and baroclinic structures 'Wavelets': what and why ? (4) 4. Real structure functions are not separable Horizontal scales are associated with corresponding vertical scales (from Ingleby, 2001) 'Wavelets': what and why ? (5) Further evidence ... Horizontal correlation length for T is shorter than that for T h h (from Ingleby, 2001) If short (long) horizontal lengths are associated with short (long) vertical lengths then, T v v which is true under hydrostatic balance, d RT d ln p g 'Wavelets': what and why ? (6) 5. Innovative 'quick' fixes • Use alternative parameters • E.g. PV/anti-PV to improve representation of balance in parameter transform (Cullen/Payne/Wlasak/Roulstone/ Bannister) • Geostrophic co-ordinate transform • Realistic treatment of fronts v /f y g G • xG xR •T ThTvTgTp yR u /f g • Errors of the day • Extra fit to 'bred' modes • Extra 'alpha' control variables, v •J J J J v ½ T E 1 • Replacement for vertical\horizontal covariance model • 'WAVELET' (actually 'WAVEBAND') TRANSFORM 'Wavelets': what and why ? (7) 6. A waveband summation (WS) transform The transform Current U-transform 'New' WS U-transform UpUvUh Up J j 0 UvjUh 2 j Vertical transform has position and scale dependence J Up Uvj Uh 2 j z z l m l m z z l m l m z p z p l m p l m p j 0 u v A A A A The wavebands 1.0 2 1 2 2 2 3 2 4 2 5 (a) Oversized last bandpass function 2 j 0.5 0.0 1.0 2 1 J 2 2 2 3 2 4 2 5 (b) Undersized last bandpass function 2 6 2 j 0.5 0.0 0.0 100.0 200.0 300.0 total wavenumber, n 400.0 'Wavelets': what and why ? 500.0 (8) 600.0 j 0 2 j 1 Are structure functions in the current transform separable? B UU x Uv x r z d Z z UvUhv d Z z M 1 x r z 1 T 1/2 h dr M 1/2 1/2 1 Z M r 1/2 h 1 d Z z M x r z 1 d Z z f z g r 1/2 M k v k k r 1/2 h r 1/2 1/2 h k r Z z 1/2 1 r Z z 1/2 h k M 1 k Fh r k 1/2 Z z 1 M z dkFh r k If M k Fh r k M 1/2 r z dkFh r k r 1/2 h 1/2 h dkFh r k M1/2 r v k Fh r k dzM1/2 r Z 1 z x r z d Z 1 z 1/2 h r dkFh r k Fh Let x r z x r z 1/2 dkFh r k UvjUh 2 j h k Fh r k The WS scheme? J Up j 0 J x r z d Z 1 z Mj Z 2 j 1 z " j j ! 0 dkFh r k h k 'Wavelets': what and why ? (9) n 2 j n Fh r k Remarks on the waveband summation (WS) transform • WS is the simplest of many proposed transforms • Some others require multiple control vectors • (current length No. of bands) • This WS transform reduces to current scheme if band index dropped • Implied structure functions are not separable • (even if Uv independent of horiz. pos.) • The 2 j are not mutually orthogonal • No exact inverse transform • Need approximations when calibrating • Increase scale resolution, decrease position resolution • Other documents • Andrews P., Covariance development strategy: a three point plan ... (Var. working paper 20) • Ingleby N.B., Options for improving and modelling background errors ... • Andrews P., Lorenc A., On introducing a multi-scale waveband summation covariance model ... (Var. working paper 19) • Bannister R., ...a description of the proposed waveband summation transformation (available via www.met.rdg.ac.uk/~ross/DARC/DataAssim.html) 'Wavelets': what and why ? (10)
© Copyright 2024