A.P. Practice Calculus Exam - Definite Integrals, MVT Don’t skip steps that you cannot skip. Calculators allowed for arithmetic only. 17 1. #( "1 ) 2x 7 + 1 dx "17 # "2x 2. 4 dx "2 ! ! " "1 2 3. # ("x " 6x + 3) dx 4. 2 6 # 3sin x dx 0 ! ! 9 5. 3 # 4 & ) %$ x " x (' dx 1 ! 6. x 2 "1 dx # 0 ! 3 7. " x( x 0 2 4 3 + 1) dx ! 8. # 4 " x dx 3 ! 3" x) ( # 3 3# 1 9. 9 x 10. dx 2 $ ( x " cos x ) dx 0 ! ! www.MasterMathMentor.com Stu Schwartz 11. Given that a( t ) = 2t with v o = "1, find the following from t = 0 to t = 4. If there is a breakup of an integral, show that before any calculations take place. Displacement ! ! Distance 12. Find the exact average value of f ( x ) = x 2 + x over [1, 4] (exact) ! 13. Find the value of c guaranteed by the Mean Value Theorem for Integrals for f ( x ) = 4 + x over [1, 4] (3 dec pl) ! 14. Use the Second Fundamental Theorem of Calculus to find F "( x ) x a) F ( x ) = # "4 5t 5 "17 dt b) F ( x ) = 8 5 # cot (3t " 4) dt x ! ! ! x 15. Show that the Second Fundamental Theorem of Calculus holds for F ( x ) = # 3t " 3 dt 4 ! www.MasterMathMentor.com Stu Schwartz A.P. Practice Calculus Exam - Definite Integrals, MVT Don’t skip steps that you cannot skip. Calculators allowed for arithmetic only. 17 "1 # (2x 7 "17 + 1) dx # "2x $"2x 5 '"1 2. & ) % 5 ("2 17 + 17 = 34 2 2 64 62 " =" 5 5 5 = "1 # ("x dx "2 $2x 8 '17 + x) 1. & % 8 ("17 ! 4 " " 6x + 3) dx # 3sin x dx ! 2 $ x3 '"1 2 3. &" " 3x + 3x) % 3 (2 6 0 " 4. [$3cos x ] 0 6 % 3( % 3 ( $3' * + 3(1) = $3' $1* & 2 ) & 2 ) * "8 1 " 3 " 3 " , "12 + 6/ = 3 + 3 . 3 3 9 # 4 & ) %$ x " x (' dx 1 ! ! 0 1 *2 5. , x 3 2 " 8x1 2 / +3 .1 #2 & 4 2 (27) " 8( 3) " % " 8( = $3 ' 3 3 3 ! 0 7. 1 2 2 6. 1 u 3 du u = x 2 + 1,du = 2x dx $x ' $x '3 "& " x) + & " x) %3 (0 % 3 (1 # 3 4 " x dx u = 4 " x,du = "1 dx 3 ! x = 0,u = 1, x = 3,u = 4 1 0 8. " # u1 2 du x = 3,u = 1, x = 4,u = 0 1 (3 " x ) # x 9 2 32 1 2 2 u ] = (1" 0) = [ 0 3 3 3 3 dx u = 3 " x,du = " 1 2 x 3# dx ! 2 $ ( x " cos x ) dx 0 2 9. 1 4 3 + 1) dx 1 "2 # u 3 du 3# %x2 ( 10. ' " sin x* &2 )0 x = 9,u = 0, x = 1,u = 2 0 $ u 4 '2 "2& ) = "8 % 4 (0 www.MasterMathMentor.com ! 0 2 20 22 + = 3 3 3 4 1 # u4 & 1 255 = 31.875 % ( = 32 ) = 2 $ 4 '1 8 8 ! " # ( x "1) dx + # ( x 2 "1) dx 3 4 " 3 2 9 " x( x x 2 "1 dx # 2 9# 2 +1 8 ! Stu Schwartz 11. Given that a( t ) = 2t with v o = "1, find the following from t = 0 to t = 4. If there is a breakup of an integral, show that before any calculations take place. Displacement ! ! Distance 4 Dist = v ( t ) = t 2 "1 "1 dt 1 4 # (t 2 "1) dt Dist = " # ( t 2 "1) dt + 52 3 Dist = 0 Disp = 2 0 4 Disp = #t 0 # (t 2 0 "1) dt 2 56 + 18 = 3 3 12. Find the exact average value of f ( x ) = x 2 + x over [1, 4] (exact) ! 4 3 $ x x2' *1 164 2 x + x ) dx & + ) + 8 # , + / 57 ( " 2 (1 %3 + 3 2 . 2 19 ! 3 f avg = 1 = = = = 4 #1 3 3 3 2 ! 4 13. Find the value of c guaranteed by the Mean Value Theorem for Integrals for f ( x ) = 4 + x over [1, 4] ! (3 dec pl) 4 4 $ 2x 3 2 ' * " 4 + x dx &%4 x + 3 )( 16 + 163 #!,+ 4 + 23/. 50 50 1 f avg = 1 = = = 3 = 4 #1 3 3 3 9 50 14 156 4+ x = 0 x= 0x= = 2.420 9 9 81 ( ) 14. Use the Second Fundamental Theorem of Calculus to find F "( x ) ! x "4 F ( x ) = # 5t 5 "17 dt F ( x ) = # cot 5 ( 3t " 4 ) dt a) b) 8 x 5 ! F $( x ) = "cot 5 ( 3x " 4 ) F $( x ) = 5x "17 x 15. Show that the Second Fundamental Theorem of Calculus holds for F ( x ) = ! ! ' d $x 2nd FTC says & # 3t " 3 dt ) = 3x " 3 dx % 4 ( x 3 ! 2 # 3t " 3 dt = 9 (3x " 3) 2 " 6 4 # 3t " 3 dt 4 3 $2 ' d& ( 3x " 3) 2 " 6) %9 ( = 3x " 3 dx www.MasterMathMentor.com ! Stu Schwartz
© Copyright 2024