FOR OCR GCE Examinations Advanced / Advanced Subsidiary Core Mathematics C1 Paper D MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for using a valid method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. C1 Paper D – Marking Guide 1. x = 4 ± 16 + 32 M1 2 = 4±4 3 = 2 ± 2 3 2 2. 3. 4. quadratic, coeff of x2 = 1, minimum is (−2, 5) ∴ y = (x + 2)2 + 5 a = 4, b = 9 = x2 + 4x + 9, (3) M1 A1 M1 A1 (4) x2 − 6x + 7 = 2x − 9 x2 − 8x + 16 = 0 (x − 4)2 = 0 x = 4, y = −1 M1 M1 A2 (ii) the line is a tangent to the curve at the point (4, −1) B1 (i) = (6 + (i) 4 1 16 ) 3 3 = (6 + 2) = (ii) 3 x x= (i) 8 =2 A1 =4 M1 3 4 x = (5) B1 M1 1 3 5. M1 A1 M1 9 16 A1 (6) y y = 2x − 1 B2 y = (x − 2)2 (0, 4) B2 O (2, 0) (0, −1) ( 12 , 0) x (ii) x2 − 4x + 4 > 2x − 1 x2 − 6x + 5 > 0 (x − 1)(x − 5) > 0 1 M1 M1 A1 5 x < 1 or x > 5 6. (i) 3 y 2y + =7 M1 2 (ii) 2y + 3 = 7y 2y2 − 7y + 3 = 0 M1 A1 (2y − 1)(y − 3) = 0 y = 12 , 3 M1 A1 1 x3 = 1 2 ,3 1 3 x = ( 2 ) , 33 = C1D MARKS page 2 (7) 1 8 , 27 M1 A1 Solomon Press (7) 7. (i) dy = dx (ii) d2 y −3 −5 = − 14 x 2 − 3x 2 2 dx (iii) LHS = 4x2( − 14 x 1 2 x − 12 + 2x − 32 − 32 1 2 = − x − 12x =0 8. (i) (ii) M1 A2 M1 A1 − 3x − 12 − 52 1 2 + 2x + 8x + 2x − 32 1 2 − x + 4x 1 ) − ( x 2 − 4x − 12 − 12 ) M1 A1 A1 A1 f ′′(x) = 12 − 6x f ′′(0) = 12, f ′′(x) > 0 ∴ (0, 2) minimum f ′′(4) = −12, f ′′(x) < 0 ∴ (4, 34) maximum M1 A1 A1 M1 y x (iv) 2 < k < 34 (i) grad = B2 B1 7−4 9−7 ∴ y−4= = 3 2 3 2 (x − 7) M1 2y − 8 = 3x − 21 3x − 2y − 13 = 0 A1 y = 8x B1 (iii) at R, 3x − 2(8x) − 13 = 0 x = −1 ∴ R (−1, −8) M1 A1 OP = (10) M1 A1 (ii) 7 2 + 42 = 49 + 16 = OR = (−1)2 + (−8) 2 = ∴ OP = OR 65 1 + 64 = M1 A1 65 A1 (10) (i) 8 4 = − − = −2 M1 A1 (ii) = ( 2 +2 8 , M1 A1 (iii) perp. grad = 8−2 4 −8 2 ) = (5, −2) −1 −2 = 1 2 M1 perp. bisector: y + 2 = 1 2 (x − 5) M1 A1 centre where y = 0 ∴ x = 9 ⇒ (9, 0) (iv) (8) M1 A1 O 10. − 12 − 12 f ′(x) = 12x − 3x2 for SP, 12x − 3x2 = 0 3x(4 − x) = 0 x = 0, 4 ∴ (0, 2), (4, 34) (iii) 9. ) + 4x( 12 x 49 + 16 = radius = dist. (2, 4) to (9, 0) = 2 2 ∴ (x − 9) + (y − 0) = ( 65 ) x2 − 18x + 81 + y2 = 65 x2 + y2 − 18x + 16 = 0 M1 A1 65 2 B1 M1 Solomon Press A1 (12) Total (72) C1D MARKS page 3 Performance Record – C1 Paper D Question no. 1 2 3 4 5 6 7 8 9 10 Topic(s) quad. formula compl. square simul. eqn indices inequal. quad. in function of x diff. SP straight lines circle Marks 3 4 5 6 7 7 8 10 10 12 Student C1D MARKS page 4 Solomon Press Total 72
© Copyright 2025