FOR EDEXCEL GCE Examinations Advanced Subsidiary Core Mathematics C1 Paper K MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. C1 Paper K – Marking Guide 1. 2. (22)y + 3 = 23 2y + 6 = 3 y = − 32 = ∫ (3x2 + = x3 − 3. EH AD = 1+ 5 3− 5 1 2 x−2) dx EF AB = ∴ 1+ 5 3− 5 M1 A2 EH 5 × = (a) 1+ 5 3− 5 3+ 5 3+ 5 5 (2 + 3 5 3 5+5 = + + =2+ 9−5 5 M2 A1 5)=5+ 2 5 M1 A1 B2 1 x B2 O x 3 solutions 2 x − 4x + 1 x B1 2 = 0 ⇒ x − 4x = − 1 x and the graphs of y = x2 − 4x and y = − (a) 1 x intersect at 3 points M1 A1 x + k = ± k2 − 4 M1 x = −k ± k − 4 k = 3 ∴ x = −3 ± = −3 ± 6. 32 − 4 M1 5 A1 AP: a = 77, l = −70 S50 = 50 [77 + (−70)] = 25 × 7 = 175 2 (b) AP: a = 2, d = = (6) B1 M1 A1 1 2 n [4 + 12 (n − 1)] 2 1 n[8 + (n − 1)] = 14 4 B2 M1 n(n + 7) [k= 1 4 ] x − 3y + 7 = 0 ⇒ x = 3y − 7 sub. into x2 + 2xy − y2 = 7 (3y − 7)2 + 2y(3y − 7) − y2 = 7 y2 − 4y + 3 = 0 (y − 1)(y − 3) = 0 y = 1, 3 ∴ x = −4, y = 1 or x = 2, y = 3 C1K MARKS page 2 (6) A1 (a) Sn = 7. B1 (x + k)2 − k2 + 4 = 0 (x + k)2 = k2 − 4 2 (b) (6) y y=− 5. (4) M1 y = x2 − 4x (b) (3) B1 x−1 + c 1 2 ∴ EH = 4. M1 M1 A1 Solomon Press A1 (7) M1 M1 A1 M1 A1 M1 A1 (7) 8. (a) (b) 9. (a) (b) dy = 1 − 4x−3 dx B1 d2 y = 12x−4 dx 2 M1 A1 y= ∫ (1 − 4x−3) dx y = x + 2x−2 + c x = −1, y = 0 ∴ 0 = −1 + 2 + c c = −1 y = x + 2x−2 − 1 when x = 2, y = 2 + 12 − 1 = 32 M1 y=x− 6 x +9 M1 A1 dy −1 3 = 1 − 3x 2 = 1 − x dx M1 A1 x=4 ∴y=1 grad of tangent = 1 − grad of normal = −1 − 12 3 2 M1 A2 M1 A1 = − 12 M1 =2 M1 A1 ∴ y − 1 = 2(x − 4) y = 2x − 7 (c) at intersect: (9) M1 A1 x − 6 x + 9 = 2x − 7 x + 6 x − 16 = 0 M1 ( x + 8)( x − 2) = 0 M1 x = −8, 2 A1 x = 2 ⇒ x = 4 (at P) x = −8 ⇒ no real solutions ∴ normal does not intersect again 10. A1 (a) y − 4 = 3(x + 6) y = 3x + 22 M1 A1 (b) at B, x = 0 ∴ y = 2 ⇒ B (0, 2) at C, x − 7(3x + 22) + 14 = 0 x = −7 ∴ C (−7, 1) B1 M1 A1 A1 (c) grad AB = 2−4 0 − (−6) grad AC = 1− 4 −7 − (−6) (d) = − 13 (13) M1 A1 =3 grad AB × grad AC = − 13 × 3 = −1 M1 ∴ AB perp to AC ∴ ∠BAC = 90° A1 AB = (0 + 6)2 + (2 − 4)2 = 36 + 4 = AC = (−7 + 6)2 + (1 − 4)2 = 1+ 9 = area = 1 2 40 = 2 10 M1 A1 10 × 2 10 × 10 = 10 Solomon Press M1 A1 (14) Total (75) C1K MARKS page 3 Performance Record – C1 Paper K Question no. 1 2 3 4 5 6 7 8 9 10 Topic(s) indices integr. surds curve sketch compl. square AP simul. eqn diff., integr. diff., normal straight lines Marks 3 4 6 6 6 7 7 9 13 14 Student C1K MARKS page 4 Solomon Press Total 75
© Copyright 2024