GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (Sample) STUDENT NAME: _____Key______________ STUDENT id #: ___________________________ ------------------------------------------------------------------------------------------------------------------------------------------- ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.) Important Formulas: 1. Motion along a straight line with a constant acceleration vaver. speed = [dist. taken]/[time trav.]=S/t; vaver.vel. = x/t; vins =dx/t; aaver.= vaver. vel./t; a = dv/t; v = vo + at; x= 1/2(vo+v)t; x = vot + 1/2 at2; v2 = vo2 + 2ax (if xo=0 at to=0) 2. Free fall motion (with positive direction ) g = 9.80 m/s2; y = vaver. t vaver.= (v+vo)/2; v = vo - gt; y = vo t - 1/2 g t2; v2 = vo2 – 2gy (if yo=0 at to=0) 3. Motion in a plane 4. Projectile motion (with positive direction ) 5. Uniform circular Motion vx = vo cos; vy = vo sin; x = vox t+ 1/2 ax t2; y = voy t + 1/2 ay t2; vx = vox + at; vy = voy + at; vx = vox = vo cos; x = vox t; xmax = (2 vo2 sin cos)/g = (vo2 sin2)/g for yin = yfin; vy = voy - gt = vo sin - gt; y = voy t - 1/2 gt2; a=v2/r, T=2r/v 6. Relative motion v PA v PB v BA a PA a PB 7. Component method of vector addition 1 A A x2 A y2 ; = tan-1 Ay /Ax; The scalar product A a b = a b c o s a b ( a x iˆ a y ˆj a z kˆ ) ( b x iˆ b y ˆj b z kˆ ) a b = a xb x a yb y a zbz The vector product a b ( a x iˆ a y ˆj a z kˆ ) ( b x iˆ b y ˆj b z kˆ ) A = A1 + A2 ; Ax= Ax1 + Ax2 and Ay = Ay1 + Ay2; iˆ a b b a ax bx ˆj a b y y kˆ a a z iˆ b bz y a y bz ( a y b z b y a z ) iˆ ( a z b x b z a x ) ˆj ( a x b y z ax bx ˆj bxa y ax az kˆ bx bz a y b y ) kˆ 1. Second Newton’s Law ma=Fnet ; 2. Kinetic friction fk =kN; 3. Static friction fs =sN; 4. Universal Law of Gravitation: F=GMm/r2; G=6.67x10-11 Nm2/kg2; 5. Drag coefficient 6. Terminal speed 7. Centripetal force: Fc=mv2/r 8. Speed of the satellite in a circular orbit: v2=GME/r 9. The work done by a constant force acting on an object: 10. Kinetic energy: D vt K 1 C Av 2 2 2m g C A 1 m v 2 W F d cos F d 2 11. Total mechanical energy: E=K+U 12. The work-energy theorem: W=Kf-Ko; Wnc=K+U=Ef-Eo 13. The principle of conservation of mechanical energy: when Wnc=0, Ef=Eo 14. Work done by the gravitational force: W g m gd cos 2 1. Work done in Lifting and Lowering the object: K K f K W i F a W k x ; if g f K Spring Force: 3. Work done by a spring force: 4. Work done by a variable force: W 1 k x 2 s x W x W ; P t Pavg 5. Power: 6. Potential energy: 7. d W d t U i ; W 2 i W a g ( H o o k 's l a w ) 2. x K W ; U 2 o ; if x i x ; W s 1 k x 2 2 F ( x )d x i x x f F v F ( x )d x i m g ( y f y i ) m g y ; if y i 0 a n d U 1 k x 2 8. Elastic potential Energy: U ( x ) 9. Potential energy curves: F ( x ) 10. Work done on a system by an external force: F ric tio n is n o t in v o lv e d W i 0; U ( y ) m g y 2 d U ( x ) ; K ( x ) d x E m e c K E E th U ( x ) m e c U W h e n k in e tic fric tio n fo rc e a c ts w ith in th e s y s te m E W m e c E th E in t fkd Conservation of energy: Pavg E ; P t 12. Power: 13. Center of mass: 14. f Gravitational Potential Energy: U 11. 0 a n d x f F v c o s ; P 1 k x 2 rc o m W E E m e c E fo r is o la te d s y s te m 1 M d E d t i 1 E in t m e c E th 0 ; n th (W = 0 ) E m i ri Newtons’ Second Law for a system of particles: F net M a c o m 3 1. 2. dP Linear Momentum and Newton’s Second law for a system of particles: P M v c o m a n d F n e t dt J Collision and impulse: t F ( t ) d t ; J F a v g t ; when a stream of bodies with mass m and f ti F avg speed v, collides with a body whose position is fixed p Impulse-Linear Momentum Theorem: p f n n m p v m v t t t J i Pi P f f o r c l o s e d , i s o l a t e d s y s t e m 3. Law of Conservation of Linear momentum: 4. Inelastic collision in one dimension: 5. Motion of the Center of Mass: The center of mass of a closed, isolated system of two colliding bodies is p 1i p p1 2 i f p 2 f not affected by a collision. 6. Elastic Collision in One Dimension: 7. Collision in Two Dimensions: 8. Variable-mass system: 9. Angular Position: v vi v 10. Angular Displacement: m m m m 1 1 p1 2 ix fx 2 v1i ; v 2 f 2 p 2 fx ; m p 1 iy p 2m1 1 m 2 iy v1i 2 p1 fy p 2 fy ln rel M M i ( s e c o n d ro c k e t e q u a tio n ) f (ra d ia n m e a s u re ) 11. Angular velocity and speed: 12. Angular acceleration: f M a (firs t ro c k e t e q u a tio n ) rel S r p 1 ix p R v f v1 avg 2 1 (p o s itiv e fo r c o u n te r c lo c k w is e ro ta tio n ) ; t ; t avg d dt (p o s itiv e fo r c o u n te rc lo c k w is e ro ta tio n ) d dt 4 1. angular acceleration: o o ot 2 o )t o 1 t2 2 2 ( o ) 2 o t 1 t 2 v r; a r; t a r 1 I 2 I 2 r 2d m ; I 2 r; T 2 r 2 v m i ri 2 f o r b o d y a s a s y s t e m o f d i s c r e t e p a r t i c l e s ; f o r a b o d y w ith c o n tin u o u s ly d is trib u te d m a s s . I M h 4. The parallel axes theorem: I 5. Torque: 6. Newton’s second law in angular form: 7. Work and Rotational Kinetic Energy: W P dW dt com 2 r F t r F r F s i n ; K K v Rolling bodies: f K i 2 f net I 1 I 2 2 i f d ; W ( f i ) fo r c o n st; i W w o rk e n e rg y th e o re m fo r ro ta tin g b o d ie s R com a com a com Torque as a vector: 1 I 2 1 I com 2 R K 9. v 2 r Rotational Kinetic Energy and Rotational Inertia: K 8. 2 Linear and angular variables related: s r; 3. 1 ( 2 2. t o 2 1 m v 2 g s in 1 I com / M R r F ; 2 2 com fo r ro llin g s m o o th ly d o w n th e ra m p r F s in r F r F 5 1. 2. l r p m (r v ); Angular Momentum of a particle: l r m v s in r p Newton’s Second law in Angular Form: n et L 3. 5. 6. n i1 Angular momentum of a system of particles: 4. rm v r p r m v d l d t L I Conservation of Angular Momentum: L i L n et ext li d L d t Angular Momentum of a Rigid Body: Static equilibrium: if a ll th e fo rc e s lie in x y p la n e F n et,x 0; F n et, y 0; 0 net,z s tre s s = m o d u lu s s tra in Elastic Moduli: 8. Tension and Compression: 9. Shearing: G 10. Hydraulic Stress: L , G L p B 11. Simple harmonic motion: 12. The Linear Oscillator: 13. Pendulums: (is o la te d s y s te m ) F net 0 ; net 0 7. F A f F A E L , E i s t h e Y o u n g 's m o d u l u s L is th e s h e a r m o d u lu s V V , B is th e b u lk m o d u lu s x x m c o s( t ); v x k , T m 2 m s in ( t ); a 2 x m c o s( t ) m k T 2 I , to rs io n p e n d u lu m k T 2 L , s im p le p e n d u lu m g T 2 I , p h y s ic a l p e n d u lu m m g h 6 1. Damped Harmonic Motion: 2. Sinusoidal waves: x (t) x m b t e 2 m k m c o s ( ' t ), ' 2 b 2 4 m 1 T , v 3. Wave speed on stretched string: 4. Average power transmitted by a sinusoidal wave on a stretched string: Pavg 5. Interference of waves: 6. Standing waves: 7. Resonance: 8. Sound waves: f y v B Interference: L 2 (2 m Sound level in decibels: 12. Standing wave patterns in pipes: 13. f v v Beats: 1 ) 1 v 2 11. f k 1 v 2 2 2 fo r m f 2 m s 2 m (1 0 d B ) lo g , I I , I Io 0 ,1 , 2 , 3 ..., d e s tr u c tiv e in te r f e r e n c e Ps 4 r o 2 1 0 1 2 W / m 2 n v , n 1 , 3 , 5 , ..., f o r p ip e c lo s e d a t o n e e n d a n d o p e n e d a t th e o th e r 4 L f1 y 0 ,1 , 2 , 3 ..., c o n s tr u c tiv e in te r f e r e n c e m 1 1 ] s in ( k x t ) 2 2 n v , n 1 , 2 , 3 , ..., f o r p ip e o p e n e d f r o m 2 L b ea t b t f T f e s in k x ] c o s t m (2 ) fo r m Sound Intensity: co s m 2 10. f 2 2 m v , f o r n 1 , 2 , 3 , ... 2 L P , I A I , 1 k x 2 , L m , E (t) v y '( x , t ) [ 2 y n v s in ( k x t ), k m y '( x , t ) [ 2 y 9. y ( x , t) 2 b o th e n d s 2 7 1. The Doppler effect: f ' f (1 vR ), vs vR the speed of the receiver; vs the speed of the sound;(vs=331m/s); + for receiver approaching stationary emitter, - for receiver moving away from the stationary emitter; 1 f' f , v E 1 vs vE the speed of the emitter, vs the speed of the sound, - for emitter approaching stationary receiver, + for emitter moving away from the stationary receiver; f ' f vs vR general Doppler Effect vs vE 8 9 2. Your grandfather clock’s pendulum has a length of 0.9930 m. if the clock loses half a minute per day, how should you adjust the length of the pendulum? For a simple pendulum T 2 L g Suppose clock's pendulum oscillates "n" times in a day. nT1 (24 3600 30) 86370s after the adjustment of the pendulum's length nT2 (24 3600) 86400 s L2 g T2 Take ratio T1 L 2 1 g 2 L2 86400 L1 86370 864002 0.9930 L2 0.9937 2 86370 L2 L1 0.9937 0.9930 7 104 m 10 11 4. 12 5. 13 6. 14
© Copyright 2025