GENERAL PHYSICS PH 221-3A (Dr. S. Mirov) Test 4 (12/03/07) Sample Key STUDENT NAME: ________________________ STUDENT id #: ___________________________ ------------------------------------------------------------------------------------------------------------------------------------------- ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.) Important Formulas: 1 1. Motion along a straight line with a constant acceleration vaver. speed = [dist. taken]/[time trav.]=S/t; vaver.vel. = Δx/Δt; vins =dx/Δt; aaver.= Δvaver. vel./Δt; a = dv/Δt; v = vo + at; x= 1/2(vo+v)t; x = vot + 1/2 at2; v2 = vo2 + 2ax (if xo=0 at to=0) 2. Free fall motion (with positive direction ↑) g = 9.80 m/s2; y = vaver. t vaver.= (v+vo)/2; v = vo - gt; y = vo t - 1/2 g t2; v2 = vo2 – 2gy (if yo=0 at to=0) 3 3. Motion in a plane 4. Projectile motion (with positive direction ↑) 5. Uniform circular Motion vx = vo cosθ; vy = vo sinθ; x = vox t+ 1/2 ax t2; y = voy t + 1/2 ay t2; vx = vox + at; vy = voy + at; vx = vox = vo cosθ; x = vox t; xmax = (2 vo2 sinθ cosθ)/g = (vo2 sin2θ)/g for yin = yfin; vy = voy - gt = vo sinθ - gt; y = voy t - 1/2 gt2; a=v2/r, T=2πr/v 6. Relative motion r r r v PA = v PB + v BA r r a PA = a PB 7. Component method of vector addition 1 A = A x2 + A y2 ; θ = tan-1 ⏐Ay /Ax⏐; r r The scalar product A a ⋅ b = a b c o s φ r r a ⋅ b = ( a x iˆ + a y ˆj + a z kˆ ) ⋅ ( b x iˆ + b y ˆj + b z kˆ ) r r a ⋅ b = a xb x + a yb y + a zbz r r The vector product a × b = ( a x iˆ + a y ˆj + a z kˆ ) × ( b x iˆ + b y ˆj + b z kˆ ) A = A1 + A2 ; Ax= Ax1 + Ax2 and Ay = Ay1 + Ay2; iˆ r r r r a × b = −b × a = ax bx ˆj a b y y kˆ a a z = iˆ b bz y a y bz = ( a y b z − b y a z ) iˆ + ( a z b x − b z a x ) ˆj + ( a x b y z ax bx − ˆj − bxa y ax az + kˆ bx bz a y b y = ) kˆ 1. Second Newton’s Law ma=Fnet ; 2. Kinetic friction fk =μkN; 3 3. St ti friction Static f i ti fs =μsN; N 4. Universal Law of Gravitation: F=GMm/r2; G=6.67x10-11 Nm2/kg2; 5. Drag coefficient 6. Terminal speed 7. Centripetal force: Fc=mv2/r 8. Speed of the satellite in a circular orbit: v2=GME/r 9. The work done by a constant force acting on an object: 10. Kinetic energy: D = vt = K = 1 C ρ Av 2 2 2m g C ρ A 1 m v 2 W r r = F d cosφ = F ⋅ d 2 11. Total mechanical energy: E=K+U 12. The work-energy theorem: W=Kf-Ko; Wnc=ΔK+ΔU=Ef-Eo 13. The principle of conservation of mechanical energy: when Wnc=0, Ef=Eo 14. Work done by the gravitational force: W g = m gd cosφ 2 1. Work done in Lifting and Lowering the object: Δ K = K f − K = W i F a + W = − k x ; if g = f K Spring Force: 3. Work done by a spring force: 4. Work done by a variable force: W 1 k x 2 = s x W ; P Δ t Pavg = Power: 6. Potential energy: 7. d W d t = Δ U ; W 2 i − = − W a g = −W ; Δ U 2 o ; if x i = x ; W s = − 1 k x 2 2 F ( x )d x ∫ = − x x f r r F ⋅ v = F ( x )d x i = m g ( y f − y i ) = m g Δ y ; if y i = 0 a n d U 1 k x 2 8. Elastic potential Energy: U ( x ) = 9. Potential energy curves: F ( x ) = − 10. Work done on a system by an external force: F ric tio n is n o t in v o lv e d W i = 0; U ( y ) = m g y 2 d U ( x ) ; K ( x ) = d x = Δ E m e c = Δ K E Δ E th = − U ( x ) m e c + Δ U W h e n k in e tic fric tio n fo rc e a c ts w ith in th e s y s te m = Δ E W m e c + Δ E th + Δ E in t fkd Conservation of energy: Pavg = Δ E ; P Δ t 12. Power: 13. Center of mass: 14. f Gravitational Potential Energy: Δ U 11. = 0 a n d x i F v c o s φ = ; P 1 k x 2 f ∫ = W x 5. i ( H o o k 's l a w ) 2. x K r rc o m = W = Δ E = Δ E m e c + Δ E fo r is o la te d s y s te m = 1 M d E d t i =1 + Δ E in t m e c + Δ E th = 0 ; n ∑ th (W = 0 ) Δ E m i r ri Newtons’ Second Law for a system of particles: r F net = r M a c o m 3 1. 2. r r r dP r Linear Momentum and Newton’s Second law for a system of particles: P = M v c o m a n d F n e t = dt r J = Collision and impulse: ∫ t r F ( t ) d t ; J = F a v g Δ t ; when a stream of bodies with mass m and f ti F avg = − speed v, collides with a body whose position is fixed r p Impulse-Linear Momentum Theorem: r − p f n n Δ m Δ p = − Δ v m Δ v = − Δ t Δ t Δ t r = J i r r Pi = P f f o r c l o s e d , i s o l a t e d s y s t e m 3. Law of Conservation of Linear momentum: 4. Inelastic collision in one dimension: 5. Motion of the Center of Mass: The center of mass of a closed, isolated system of two colliding bodies is r r p 1i + p r = p1 2 i f r + p 2 f not affected by a collision. 6. Elastic Collision in One Dimension: 7. Collision in Two Dimensions: 8. Variable-mass system: 9. Angular Position: v − vi = v 10. Angular Displacement: α m m = − m + m 1 1 = p1 2 ix fx 2 v1i ; v 2 f 2 + p 2 fx ; = m p 1 iy + p 2m1 1 + m 2 iy v1i 2 = p1 fy + p 2 fy ln rel M M i ( s e c o n d ro c k e t e q u a tio n ) f (ra d ia n m e a s u re ) Δ θ = θ 11. Angular velocity and speed: 12. Angular acceleration: f = M a (firs t ro c k e t e q u a tio n ) rel S r θ = p 1 ix + p R v f v1 avg ω = 2 − θ 1 (p o s itiv e fo r c o u n te r c lo c k w is e ro ta tio n ) = Δ θ ; Δ t Δ ω ; Δ t α = avg ω = dθ dt (p o s itiv e fo r c o u n te rc lo c k w is e ro ta tio n ) d ω dt 4 ω = ω 1. angular acceleration: o = θ − θ o = ω ot + 2 = ω θ − θ o + ω )t o 1 ω t2 2 + 2 α (θ − θ o ) 2 o = ω t − 1 ω t 2 v = ω r; a = α r; t a r 1 Iω 2 = I = ∫ 2 r 2d m ; I = ∑ 2 r; T = 2π r 2π = v ω m i ri 2 f o r b o d y a s a s y s t e m o f d i s c r e t e p a r t i c l e s ; f o r a b o d y w ith c o n tin u o u s ly d is trib u te d m a s s . = I + M h 4. The parallel axes theorem: I 5. Torque: 6. Newton’s second law in angular form: τ 7. Work and Rotational Kinetic Energy: W P = dW dt com 2 τ = r F t = r⊥ F = r F s i n φ ; Δ K = K v Rolling bodies: f − K i 2 f − net = Iα = 1 Iω 2 θ ∫θ 2 i f τ dθ ; W = τ (θ f − θ i ) fo r τ = c o n st; i = W w o rk e n e rg y th e o re m fo r ro ta tin g b o d ie s = ω R com a com a com = = Torque as a vector: 1 Iω 2 = 1 I com ω 2 = α R K 9. v 2 = ω r = Rotational Kinetic Energy and Rotational Inertia: K 8. 2 Linear and angular variables related: s = θ r; 3. 1 (ω 2 θ − θ ω 2. + α t o r τ 2 + 1 m v 2 g s in θ 1 + I com / M R r r = r × F ; 2 2 com fo r ro llin g s m o o th ly d o w n th e ra m p τ = r F s in φ = r F ⊥ = r⊥ F 5 1. 2. r r r r r l = r × p = m (r × v ); Angular Momentum of a particle: l = r m v s in φ = r p r Newton’s Second law in Angular Form: τ n et = r L = 3. 5. 6. n ∑ i=1 Angular momentum of a system of particles: r τ 4. = rm v ⊥ ⊥ = r⊥ p = r⊥ m v r d l d t L = Iω r r Conservation of Angular Momentum: L i = L n et ext = r li r d L d t Angular Momentum of a Rigid Body: Static equilibrium: if a ll th e fo rc e s lie in x y p la n e F n et,x = 0; F n et, y = 0; τ = 0 net,z s tre s s = m o d u lu s × s tra in Elastic Moduli: 8. Tension and Compression: 9. Shearing: = G 10. Hydraulic Stress: Δ L , G L p = B 11. Simple harmonic motion: 12. The Linear Oscillator: 13. Pendulums: (is o la te d s y s te m ) r r F net = 0 ; τ net = 0 7. F A f F A = E Δ L , E i s t h e Y o u n g 's m o d u l u s L is th e s h e a r m o d u lu s Δ V V , B is th e b u lk m o d u lu s x = x ω = m c o s(ω t + φ ); v = − ω x k , T m = 2π m s in (ω t + φ ); a = − ω 2 x m c o s (ω t + φ ) m k T = 2π I , to rs io n p e n d u lu m k T = 2π L , s im p le p e n d u lu m g T = 2π I , p h y s ic a l p e n d u lu m m g h 6 1. Damped Harmonic Motion: 2. Sinusoidal waves: x (t) = x m − b t e 2 m k m c o s (ω ' t + φ ), ω ' = 2π ω − b 2 4 m 1 T , v = 3. Wave speed on stretched string: 4. Average power transmitted by a sinusoidal wave on a stretched string: Pavg = 5. Interference of waves: 6. Standing waves: 7. Resonance: 8. Sound waves: f = y v λ B λ Interference: Δ L φ = λ 2π = (2 m Sound level in decibels: 12. Standing wave patterns in pipes: 13. f = v v λ Beats: β + 1 )π 1 ρ vω 2 11. λ = f = ω k = λ 1 μ vω 2 2 2 fo r m f 2 m s 2 m = (1 0 d B ) lo g , I = I , I Io = 0 ,1 , 2 , 3 ..., d e s tr u c tiv e in te r f e r e n c e Ps 4π r o 2 = 1 0 − 1 2 W / m 2 n v , n = 1 , 3 , 5 , ..., f o r p ip e c lo s e d a t o n e e n d a n d o p e n e d a t th e o th e r 4 L f1 − y = 0 ,1 , 2 , 3 ..., c o n s tr u c tiv e in te r f e r e n c e = = m 1 1 φ ] s in ( k x − ω t + φ ) 2 2 n v , n = 1 , 2 , 3 , ..., f o r p ip e o p e n e d f r o m 2 L b ea t − b t = λ f T = f e s in k x ] c o s ω t = m (2π ) fo r m Sound Intensity: = co s m 2π 10. f 2π 2 m v , f o r n = 1 , 2 , 3 , ... 2 L P , I = A I = , 1 k x 2 , ρ Δ L m λ , E (t) ≈ τ μ v = y '( x , t ) = [ 2 y = n v = s in ( k x − ω t ), k = m y '( x , t ) = [ 2 y φ = 9. y ( x , t) = 2 b o th e n d s 2 7 1. The Doppler effect: f ' = f (1 ± vR ), vs vR the speed of the receiver; vs the speed of the sound;(vs=331m/s); + for f receiver i approaching hi stationary i emitter, i - for receiver moving away from the stationary emitter; ⎛ ⎞ ⎜ 1 ⎟ f' = f ⎜ ⎟, v E ⎜1m ⎟ vs ⎠ ⎝ vE the speed of the emitter, vs the speed of the sound, - for emitter approaching stationary receiver, + for emitter moving away from the stationary receiver; f '= f vs ± vR general Doppler Effect vs m vE 8 9 2. Your grandfather clock’s pendulum has a length of 0.9930 m. if the clock loses half a minute per day, how should you adjust the length of the pendulum? For a simple pendulum T = 2π L g Suppose pp clock's ppendulum oscillates "n" times in a day. y ⇒ nT1 = (24 ⋅ 3600 − 30) = 86370s after the adjustment of the pendulum's length nT2 = (24 ⋅ 3600) = 86400 s L2 g T2 Take ratio = = T1 L 2π 1 g 2π L2 86400 = L1 86370 864002 ⋅ 0.9930 ⇒ L2 = = 0.9937 2 86370 ⇒ L2 − L1 = 0.9937 0 9937 − 00.9930 9930 = 7 ⋅ 10−4 m 10 11 4. 12 5. 13 6. 14
© Copyright 2024