The XMM-BSS QSO2 sample: X-ray and accretion properties (*) Lucia BALLO

The XMM-BSS QSO2 sample:
X-ray and accretion properties(*)
Lucia BALLO
(INAF – OABrera – AstroFIt fellow)
Co-funded by
the
European
Union
Paola Severgnini, Roberto Della Ceca, Alessandro Caccianiga (INAF-OABrera)
Cristian Vignali (UniBo)
Silvia Mateos, Xavier Barcons, Francisco Carrera (IFCA)
Anna Feltre (UniPd), Amalia Corral (NOA)
(*) On behalf of the XMM-Newton Survey Science Centre
The quest for absorbed QSOs
 SMBHs ubiquitous at the centres of local spheroids (Richstone et al. 1998);
Tight correlations between MBH & host properties such as mass or stellar
velocity dispersion (Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al.
2000)
⇒
possible coevolution
 AGN feedback thought to be able to self-regulate the masses of both
spheroids and BHs.
 Most of the accretion takes place in obscured AGN ⇒
fundamental for the energetics of the Universe
understanding the BH accretion and galaxy evolution.

and
for
Hard to find and to estimate their main properties (Lbol, accretion rate, SEDs …).
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
2
The quest for absorbed QSOs
Complete characterization of the physical and energetic properties of
the principal class of AGN:



X-ray surveys are one of the best approaches to search for obscured AGN,
as in this band the emission is less affected by absorption.
Need of a complete sample, to characterize them as class.
Availability of large amount of multiwavelength data allows us to estimate
their nuclear properties.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
3
The XMM Bright Source Sample (XBS)
Della Ceca et al. 2004,
A&A, 383, 399
400 distinct X-ray sources with fx > 7x10-14 erg s-1 cm-2 , A=28 deg2
 Optical and X-ray
spectral analysis
possible for almost all
the sources in the XBS
!!
 Bright sources
⇒
very good spectral
coverage at all
wavelengths
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
4
The XBS ID and the AGN sample
Caccianiga et al. 2007,
A&A, 470, 557
Caccianiga et al. 2008,
A&A, 477, 735
Caccianiga et al., in prep
Spectral identification ~100%
⇒ 320 (obscured or unobscured) AGN
32
282
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
5
The XBS AGN sample: X-ray properties
2.5
2.5
Corral et al. 2011,
A&A, 530, A42
Absorbed AGN
1.5
Ratio
1
1.5
1
Ratio
2
2
Unabsorbed AGN
1
2
5
1
10
2
5
10
2.5
2.5
2
1
1.5
Ratio
2
1.5
1
Ratio
10
High Lx AGN
Low Lx AGN
1
2
5
Energy (keV)
L.Ballo (OABrera)
5
Energy (keV)
Energy (keV)
The XMM-BSS QSO2 sample
XMM-SSC 26
10
1
2
Energy (keV)
26/06/2013
6
The XBS AGN sample: optically normal galaxies
Severgnini et al. 2003, A&A, 406, 483
Caccianiga et al. 2007, A&A, 470, 557
XBONG/elusive AGN are probably just AGN diluted by the host galaxy light
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
7
The XBS AGN sample: the physical
properties of the unabsorbed population (I)
Marchese et al. 2012,
A&A, 539, A48
optical/UV
+
X-ray SED fitting
⇓
Lbol
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
8
The XBS AGN sample: the physical
properties of the unabsorbed population (II)
Caccianiga et al. 2013,
A&A, 549, A119
MBH from SE method
X-ray vs
accretion properties
Fanali et al. 2013,
MNRAS in press
arXiv:1305.0564
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
9
XBS-QSO 2
XBS-AGN
X-ray
spectral
analysis
(Corral et al. 2011)
⟹ 14 (44% of XBS-AGN 2)
obscured
X-ray selected
QSOs:
L2-10 keV > 1044 ergs s-1
NH > 4∙1021 cm-2
Best-fitting model in the 0.3-10 keV band: absorbed PL

mean: ~ 700 net counts (0.3-10 keV; pn+2MOS)
We confirm a flatter Γthan unobscured/low luminosity AGN

L.Ballo (OABrera)
data not good enough to identify the origin
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
10
XBS-QSO 2
XBS-AGN
X-ray
spectral
analysis
(Corral et al. 2011)
XBSJ021642.3-043553
Extremely Red Object:
R-K’~5
F2-10 keV/Fopt~200
F2-10 keV/FK~60
Severgnini et al. 2006,
A&A, 451, 859
Best-fitting model in the 0.3-10 keV band: absorbed PL

mean: ~ 700 net counts (0.3-10 keV; pn+2MOS)
We confirm a flatter Γthan unobscured/low luminosity AGN

L.Ballo (OABrera)
data not good enough to identify the origin
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
11
Spectral Energy Distribution
 Spitzer for 9/14 sources (@ 3.6, 4.5, 5.8, 8.0, 24 & 70 mm)
7 proprietary obs. (PI: P. Severgnini) + 2 in SWIRE
+ imaging @ 24 mm for 1 more object
 WISE for 14/14 sources (@ 3.4, 4.6, 12 & 22 mm)
 SDSS for 7/14 sources (u, g, r, i & z)
 GALEX for 3/14 sources (nUV @ 1700-2730 Å)
fUV @ 1350-1780 Å for 1/3
 More data from literature (OM@3440Å; POSS@4400Å; g’@4872Å; Rband magnitude)
 Radio @ 1.4 GHz (from FIRST or NVSS) for 9/14 sources (3 detections
and 6 upper limits)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
12
AGN-host deconvolution
10
10
1
1
0.1
10
QSO
1
Galaxy
0.1
Galaxy
0.1
QSO
QSO
0.01
0.01
0.01
0.1
1
Spitzer
10
WISE
100
SDSS
L.Ballo (OABrera)
Galaxy
0.1
1
GALEX
10
g’-band
The XMM-BSS QSO2 sample
100
0.1
1
10
100
R-band
XMM-SSC 26
26/06/2013
13
AGN-host deconvolution
10
10
1
1
0.1
10
QSO
1
Galaxy
0.1
Galaxy
0.1
QSO
QSO
0.01
0.01
0.01
0.1
1
Spitzer
10
WISE
100
SDSS
Galaxy
0.1
1
GALEX
10
g’-band
100
0.1
1
10
100
R-band
AGN empirical QSO templ. with different values of FIR/Fopt (Polletta et al. 2007)
•Tested both Galactic extinction curve and Galactic centrer extinction curve (Chiar & Tielens 2006)
•AV from the spectral shape of the optical spectrum
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
14
AGN-host deconvolution
10
10
1
1
0.1
10
QSO
1
Galaxy
0.1
Galaxy
0.1
QSO
QSO
0.01
0.01
0.01
0.1
1
Spitzer
10
WISE
100
SDSS
Galaxy
0.1
1
GALEX
10
100
g’-band
0.1
1
10
100
R-band
Host tested several templates, both spirals and ellipticals (Polletta et al. 2007)
•mainly driven by the optical data; guess from the Ca-break
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
15
Nuclear properties
 Host galaxy K-band absolute magnitude
⇒
log (MBH/M⨀)=-0.37⋅(K+24)+8.29
MBH
Graham (2007)
(see also Marconi & Hunt 2003)
CHECK with MBH from SE method for the 2 optically type 1 X-ray absorbed QSO:
XBSJ000100.2-250501:
log (MBH/M⨀),K-mag ~ 8.37 vs. log (MBH/M⨀),SE ~ 8.73
XBSJ144021.0+642144:
log (MBH/M⨀),K-mag ~ 9.18 vs. log (MBH/M⨀),SE ~ 9.29
 AGN
LUV+opt + LX
 Eddington ratios:
L.Ballo (OABrera)
⇒
Lbol
l=Lbol/(1.3⋅1038MBH/M⨀)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
16
Nuclear properties
 Host galaxy K-band absolute magnitude
⇒
log (MBH/M⨀)=-0.37⋅(K+24)+8.29
MBH
Graham (2007)
(see also Marconi & Hunt 2003)
CHECK with MBH from SE method for the 2 optically type 1 X-ray absorbed QSO:
XBSJ000100.2-250501:
log (MBH/M⨀),K-mag ~ 8.37 vs. log (MBH/M⨀),SE ~ 8.73
XBSJ144021.0+642144:
log (MBH/M⨀),K-mag ~ 9.18 vs. log (MBH/M⨀),SE ~ 9.29
 AGN
LUV+opt + LX
 Eddington ratios:
L.Ballo (OABrera)
⇒
Lbol
l=Lbol/(1.3⋅1038MBH/M⨀)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
17
XBS-QSO2 vs XBS-QSO1
XBS-QSO2
XBS-QSO1 44<log L2-10 keV<45.5
(Marchese et al. 2012, Caccianiga et al. 2013, Fanali et al. 2013)
XBS QSO1 - 44<logLx<45.5
XBS QSO2
XBS QSO1 - 44<logLx<45.5
XBS QSO1 - 44<logLx<45.5
XBS QSO2
XBS QSO2
11 XBS-QSO2 vs. 40 XBS-QSO1
KS test:
P(log MBH) = 0.8
L.Ballo (OABrera)
P(log Lbol) = 0.3
The XMM-BSS QSO2 sample
P(log l) = 0.6
XMM-SSC 26
26/06/2013
18
XBS-QSO2 vs XBS-QSO1
XBS-QSO2
XBS-QSO1 44<log L2-10 keV<45.5
(Caccianiga et al. 2013)
11 XBS-QSO2 vs. 40 XBS-QSO1
XBS QSO1 - 44<logLx<45.5
XBS QSO2
KS test:
P(log MBH) = 0.8
P(log Lbol) = 0.3
P(log l) = 0.6
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
19
A violation of the effective Eddington
limit paradigm?
XBS-QSO2
XBS-QSO1 44<log L2-10 keV<45.5
(Marchese et al. 2012, Caccianiga et al. 2013)
Fabian et al. (2008,2009)
Vasudevan & Fabian (2013)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
20
mid-IR vs X-rays
(e.g. Horst et al. 2006,2008; Gandhi et al. 2009; Horst et al. 2009)

Core measurements @12.3 µm vs intrinsic X-ray luminosities of local Seyfert with high-resolution
mIR data: tight relation, irrespective of the amount of obscuration
⇒
dust clouds have
significant clumpiness in the AGN tori.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
21
mid-IR vs X-rays
(e.g. Horst et al. 2006,2008; Gandhi et al. 2009; Horst et al. 2009)

Core measurements @12.3 µm vs intrinsic X-ray luminosities of local Seyfert with high-resolution
mIR data: tight relation, irrespective of the amount of obscuration
⇒
dust clouds have
significant clumpiness in the AGN tori.
Assuming the 12.3 µm (restframe) emission as recovered
by our modeling of the
nuclear emission, we extend
this relation also in the QSO
regime.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
22
Summary
 Complete sample of X-ray high-luminosity AGN: 14 obscured QSOs
from the XBS.
 Multiwavelength observations (Spitzer, WISE,
separation of nuclear and host-galaxy emission.
SDSS,
GALEX…):
 MBH, Lbol: on average consistent within the errors with type 1 AGN – in
agreement with the predictions of the Unified Model.
 NH vs l: violation of the effective Eddington limit paradigm or
extremely low grain abundance.
 X-ray vs. mid-IR: X-rays and 12.3 µm as proxies of the intrinsic
emission, relation extended in the QSO domain.
NEXT PROJECTS:
 To do the same analysis for the X-ray low-luminosity absorbed AGN.
 To study the IR properties of type 1 AGN in the XBS.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
23
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
XMM-SSC 26
26/06/2013
24