The XMM-BSS QSO2 sample: X-ray and accretion properties(*) Lucia BALLO (INAF – OABrera – AstroFIt fellow) Co-funded by the European Union Paola Severgnini, Roberto Della Ceca, Alessandro Caccianiga (INAF-OABrera) Cristian Vignali (UniBo) Silvia Mateos, Xavier Barcons, Francisco Carrera (IFCA) Anna Feltre (UniPd), Amalia Corral (NOA) (*) On behalf of the XMM-Newton Survey Science Centre The quest for absorbed QSOs SMBHs ubiquitous at the centres of local spheroids (Richstone et al. 1998); Tight correlations between MBH & host properties such as mass or stellar velocity dispersion (Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000) ⇒ possible coevolution AGN feedback thought to be able to self-regulate the masses of both spheroids and BHs. Most of the accretion takes place in obscured AGN ⇒ fundamental for the energetics of the Universe understanding the BH accretion and galaxy evolution. and for Hard to find and to estimate their main properties (Lbol, accretion rate, SEDs …). L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 2 The quest for absorbed QSOs Complete characterization of the physical and energetic properties of the principal class of AGN: X-ray surveys are one of the best approaches to search for obscured AGN, as in this band the emission is less affected by absorption. Need of a complete sample, to characterize them as class. Availability of large amount of multiwavelength data allows us to estimate their nuclear properties. L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 3 The XMM Bright Source Sample (XBS) Della Ceca et al. 2004, A&A, 383, 399 400 distinct X-ray sources with fx > 7x10-14 erg s-1 cm-2 , A=28 deg2 Optical and X-ray spectral analysis possible for almost all the sources in the XBS !! Bright sources ⇒ very good spectral coverage at all wavelengths L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 4 The XBS ID and the AGN sample Caccianiga et al. 2007, A&A, 470, 557 Caccianiga et al. 2008, A&A, 477, 735 Caccianiga et al., in prep Spectral identification ~100% ⇒ 320 (obscured or unobscured) AGN 32 282 L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 5 The XBS AGN sample: X-ray properties 2.5 2.5 Corral et al. 2011, A&A, 530, A42 Absorbed AGN 1.5 Ratio 1 1.5 1 Ratio 2 2 Unabsorbed AGN 1 2 5 1 10 2 5 10 2.5 2.5 2 1 1.5 Ratio 2 1.5 1 Ratio 10 High Lx AGN Low Lx AGN 1 2 5 Energy (keV) L.Ballo (OABrera) 5 Energy (keV) Energy (keV) The XMM-BSS QSO2 sample XMM-SSC 26 10 1 2 Energy (keV) 26/06/2013 6 The XBS AGN sample: optically normal galaxies Severgnini et al. 2003, A&A, 406, 483 Caccianiga et al. 2007, A&A, 470, 557 XBONG/elusive AGN are probably just AGN diluted by the host galaxy light L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 7 The XBS AGN sample: the physical properties of the unabsorbed population (I) Marchese et al. 2012, A&A, 539, A48 optical/UV + X-ray SED fitting ⇓ Lbol L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 8 The XBS AGN sample: the physical properties of the unabsorbed population (II) Caccianiga et al. 2013, A&A, 549, A119 MBH from SE method X-ray vs accretion properties Fanali et al. 2013, MNRAS in press arXiv:1305.0564 L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 9 XBS-QSO 2 XBS-AGN X-ray spectral analysis (Corral et al. 2011) ⟹ 14 (44% of XBS-AGN 2) obscured X-ray selected QSOs: L2-10 keV > 1044 ergs s-1 NH > 4∙1021 cm-2 Best-fitting model in the 0.3-10 keV band: absorbed PL mean: ~ 700 net counts (0.3-10 keV; pn+2MOS) We confirm a flatter Γthan unobscured/low luminosity AGN L.Ballo (OABrera) data not good enough to identify the origin The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 10 XBS-QSO 2 XBS-AGN X-ray spectral analysis (Corral et al. 2011) XBSJ021642.3-043553 Extremely Red Object: R-K’~5 F2-10 keV/Fopt~200 F2-10 keV/FK~60 Severgnini et al. 2006, A&A, 451, 859 Best-fitting model in the 0.3-10 keV band: absorbed PL mean: ~ 700 net counts (0.3-10 keV; pn+2MOS) We confirm a flatter Γthan unobscured/low luminosity AGN L.Ballo (OABrera) data not good enough to identify the origin The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 11 Spectral Energy Distribution Spitzer for 9/14 sources (@ 3.6, 4.5, 5.8, 8.0, 24 & 70 mm) 7 proprietary obs. (PI: P. Severgnini) + 2 in SWIRE + imaging @ 24 mm for 1 more object WISE for 14/14 sources (@ 3.4, 4.6, 12 & 22 mm) SDSS for 7/14 sources (u, g, r, i & z) GALEX for 3/14 sources (nUV @ 1700-2730 Å) fUV @ 1350-1780 Å for 1/3 More data from literature (OM@3440Å; POSS@4400Å; g’@4872Å; Rband magnitude) Radio @ 1.4 GHz (from FIRST or NVSS) for 9/14 sources (3 detections and 6 upper limits) L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 12 AGN-host deconvolution 10 10 1 1 0.1 10 QSO 1 Galaxy 0.1 Galaxy 0.1 QSO QSO 0.01 0.01 0.01 0.1 1 Spitzer 10 WISE 100 SDSS L.Ballo (OABrera) Galaxy 0.1 1 GALEX 10 g’-band The XMM-BSS QSO2 sample 100 0.1 1 10 100 R-band XMM-SSC 26 26/06/2013 13 AGN-host deconvolution 10 10 1 1 0.1 10 QSO 1 Galaxy 0.1 Galaxy 0.1 QSO QSO 0.01 0.01 0.01 0.1 1 Spitzer 10 WISE 100 SDSS Galaxy 0.1 1 GALEX 10 g’-band 100 0.1 1 10 100 R-band AGN empirical QSO templ. with different values of FIR/Fopt (Polletta et al. 2007) •Tested both Galactic extinction curve and Galactic centrer extinction curve (Chiar & Tielens 2006) •AV from the spectral shape of the optical spectrum L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 14 AGN-host deconvolution 10 10 1 1 0.1 10 QSO 1 Galaxy 0.1 Galaxy 0.1 QSO QSO 0.01 0.01 0.01 0.1 1 Spitzer 10 WISE 100 SDSS Galaxy 0.1 1 GALEX 10 100 g’-band 0.1 1 10 100 R-band Host tested several templates, both spirals and ellipticals (Polletta et al. 2007) •mainly driven by the optical data; guess from the Ca-break L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 15 Nuclear properties Host galaxy K-band absolute magnitude ⇒ log (MBH/M⨀)=-0.37⋅(K+24)+8.29 MBH Graham (2007) (see also Marconi & Hunt 2003) CHECK with MBH from SE method for the 2 optically type 1 X-ray absorbed QSO: XBSJ000100.2-250501: log (MBH/M⨀),K-mag ~ 8.37 vs. log (MBH/M⨀),SE ~ 8.73 XBSJ144021.0+642144: log (MBH/M⨀),K-mag ~ 9.18 vs. log (MBH/M⨀),SE ~ 9.29 AGN LUV+opt + LX Eddington ratios: L.Ballo (OABrera) ⇒ Lbol l=Lbol/(1.3⋅1038MBH/M⨀) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 16 Nuclear properties Host galaxy K-band absolute magnitude ⇒ log (MBH/M⨀)=-0.37⋅(K+24)+8.29 MBH Graham (2007) (see also Marconi & Hunt 2003) CHECK with MBH from SE method for the 2 optically type 1 X-ray absorbed QSO: XBSJ000100.2-250501: log (MBH/M⨀),K-mag ~ 8.37 vs. log (MBH/M⨀),SE ~ 8.73 XBSJ144021.0+642144: log (MBH/M⨀),K-mag ~ 9.18 vs. log (MBH/M⨀),SE ~ 9.29 AGN LUV+opt + LX Eddington ratios: L.Ballo (OABrera) ⇒ Lbol l=Lbol/(1.3⋅1038MBH/M⨀) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 17 XBS-QSO2 vs XBS-QSO1 XBS-QSO2 XBS-QSO1 44<log L2-10 keV<45.5 (Marchese et al. 2012, Caccianiga et al. 2013, Fanali et al. 2013) XBS QSO1 - 44<logLx<45.5 XBS QSO2 XBS QSO1 - 44<logLx<45.5 XBS QSO1 - 44<logLx<45.5 XBS QSO2 XBS QSO2 11 XBS-QSO2 vs. 40 XBS-QSO1 KS test: P(log MBH) = 0.8 L.Ballo (OABrera) P(log Lbol) = 0.3 The XMM-BSS QSO2 sample P(log l) = 0.6 XMM-SSC 26 26/06/2013 18 XBS-QSO2 vs XBS-QSO1 XBS-QSO2 XBS-QSO1 44<log L2-10 keV<45.5 (Caccianiga et al. 2013) 11 XBS-QSO2 vs. 40 XBS-QSO1 XBS QSO1 - 44<logLx<45.5 XBS QSO2 KS test: P(log MBH) = 0.8 P(log Lbol) = 0.3 P(log l) = 0.6 L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 19 A violation of the effective Eddington limit paradigm? XBS-QSO2 XBS-QSO1 44<log L2-10 keV<45.5 (Marchese et al. 2012, Caccianiga et al. 2013) Fabian et al. (2008,2009) Vasudevan & Fabian (2013) L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 20 mid-IR vs X-rays (e.g. Horst et al. 2006,2008; Gandhi et al. 2009; Horst et al. 2009) Core measurements @12.3 µm vs intrinsic X-ray luminosities of local Seyfert with high-resolution mIR data: tight relation, irrespective of the amount of obscuration ⇒ dust clouds have significant clumpiness in the AGN tori. L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 21 mid-IR vs X-rays (e.g. Horst et al. 2006,2008; Gandhi et al. 2009; Horst et al. 2009) Core measurements @12.3 µm vs intrinsic X-ray luminosities of local Seyfert with high-resolution mIR data: tight relation, irrespective of the amount of obscuration ⇒ dust clouds have significant clumpiness in the AGN tori. Assuming the 12.3 µm (restframe) emission as recovered by our modeling of the nuclear emission, we extend this relation also in the QSO regime. L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 22 Summary Complete sample of X-ray high-luminosity AGN: 14 obscured QSOs from the XBS. Multiwavelength observations (Spitzer, WISE, separation of nuclear and host-galaxy emission. SDSS, GALEX…): MBH, Lbol: on average consistent within the errors with type 1 AGN – in agreement with the predictions of the Unified Model. NH vs l: violation of the effective Eddington limit paradigm or extremely low grain abundance. X-ray vs. mid-IR: X-rays and 12.3 µm as proxies of the intrinsic emission, relation extended in the QSO domain. NEXT PROJECTS: To do the same analysis for the X-ray low-luminosity absorbed AGN. To study the IR properties of type 1 AGN in the XBS. L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 23 L.Ballo (OABrera) The XMM-BSS QSO2 sample XMM-SSC 26 26/06/2013 24
© Copyright 2024