The XMM-BSS QSO2 sample: X-ray and accretion properties Lucia BALLO

The XMM-BSS QSO2 sample:
X-ray and accretion properties
Lucia BALLO
(INAF – OABrera – AstroFIt fellow)
Co-funded by
the
European
Union
Paola Severgnini, Roberto Della Ceca, Alessandro Caccianiga (INAF-OABrera)
Cristian Vignali (UniBo)
Silvia Mateos, Xavier Barcons, Francisco Carrera (IFCA)
Anna Feltre (UniPd), Amalia Corral (NOA)
AGN & galaxy evolution
²  SMBHs ubiquitous at the centres of local spheroids (Richstone et al. 1998);
Tight correlations between MBH & host properties such as mass or stellar
velocity dispersion (Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al.
2000)
⇒
coevolution
²  AGN feedback thought to be able to self-regulate the masses of both
spheroids and BHs; possible triggering mechanisms of AGN activity:
Ø 
major mergers of gas-rich galaxies
Ø 
secular evolution
²  Most of the accretion take place in obscured AGN
⇒ fundamental
for the energetic of the Universe and for understanding the BH
accretion and galaxy evolution.
Ø 
Hard to find and to estimate their main properties (Lbol, accretion rate, SEDs …).
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
2
AGN & galaxy evolution
First part of my AstroFIt project:
Complete characterization of the physical and energetic properties of
the principal class of AGN: The quest of absorbed QSOs
Ø 
Ø 
Ø 
X-ray surveys are one of the best approach to search for obscured AGN, as
in this band the emission is less affected by absorption.
Need of a complete sample, to characterize them as class.
Availability of large amount of multiwavelength data allows us to estimate
their nuclear properties.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
3
The XBS AGN sample
²  XMM-Newton Bright Serendipitous Survey: complete sample of X-ray sources
serendipitously detected in fields observed by the X-ray satellite XMMNewton.
²  Flux limit: ∼7·10-14 ergs cm-2 s-1
X-ray bright
⇒
allowed a wide multiwavelength detection
with present catalogues
400 src, spectral identification almost ~100%
(Della Ceca et al. 2004)
Optical spectroscopy + X-ray properties
320 (obscured or unobscured) AGN
⇒
(Caccianiga et al. 2007,2008; Corral et al. 2011)
Unobscured AGN:
optical/UV + X-ray SED fitting ⇒ Lbol (Marchese et al. 2012)
MBH from SE method (Caccianiga et al. 2013)
X-ray vs accretion properties (Fanali et al. 2013, arXiv:1305.0564)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
4
XBS-QSO 2
XBS-AGN X-ray spectral analysis
(Corral et al. 2011)
⟹ 14 (44% of XBS-AGN 2)
obscured X-ray selected QSOs:
²  L2-10 keV > 1044 ergs s-1
²  NH > 4·1021 cm-2
² Best-fitting model in the 0.3-10 keV band: absorbed PL
² We confirm a flatter Γthan unobscured/low luminosity AGN
Ø 
L.Ballo (OABrera)
data not good enough to identify the origin
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
5
Spectral Energy Distribution
²  Spitzer for 9/14 sources (@ 3.6, 4.5, 5.8, 8.0, 24 & 70 µm)
7 proprietary obs. (PI: P. Severgnini) + 2 in SWIRE
+ imaging @ 24 µm for 1 more object
²  WISE for 14/14 sources (@ 3.4, 4.6, 12 & 22 µm)
²  SDSS for 7/14 sources (u, g, r, i & z)
²  GALEX for 3/14 sources (nUV @ 1700-2730 Å)
fUV @ 1350-1780 Å for 1/3
²  More data from literature (OM@3440Å; POSS@4400Å; g’@4872Å; Rband magnitude)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
6
AGN-host deconvolution
10
10
1
1
0.1
0.1
10
QSO
1
Galaxy
Galaxy
0.1
QSO
QSO
0.01
0.1
1
Spitzer
10
WISE
100
SDSS
L.Ballo (OABrera)
0.01
0.1
1
GALEX
10
g’-band
The XMM-BSS QSO2 sample
100
0.01
0.1
Galaxy
1
10
100
R-band
SAIt 2013
09/05/2013
7
AGN-host deconvolution
10
10
1
1
0.1
0.1
10
QSO
1
Galaxy
Galaxy
0.1
QSO
QSO
0.01
0.1
1
Spitzer
10
WISE
100
SDSS
0.01
0.1
1
GALEX
10
g’-band
100
0.01
0.1
Galaxy
1
10
100
R-band
AGN empirical QSO templ. with different values of FIR/Fopt (Polletta et al. 2007)
•  Tested both Galactic extinction curve and Galactic centrer extinction curve (Chiar & Tielens 2006)
•  AV from optical spectrum
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
8
AGN-host deconvolution
10
10
1
1
0.1
0.1
10
QSO
1
Galaxy
Galaxy
0.1
QSO
QSO
0.01
0.1
1
Spitzer
10
WISE
100
SDSS
0.01
0.1
1
GALEX
10
g’-band
100
0.01
0.1
Galaxy
1
10
100
R-band
Host tested several templates, both spirals and ellipticals (Polletta et al. 2007)
•  mainly driven from optical data; guess from Ca-break
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
9
Nuclear properties
²  Host galaxy K-band absolute magnitude
⇒
log (MBH/M⨀)=-0.37⋅(K+24)+8.29
MBH
Graham (2007)
(see also Marconi & Hunt 2003)
²  AGN
LUV+opt + LX
²  Eddington ratios:
⇒
Lbol
λ=Lbol/(1.3⋅1038MBH/M⨀)
²  SED properties:
X-ray bolometric corrections:
kX=Lbol/LX
X-ray – optical index:
αOX=-0.384⋅log(Lν,2keV/Lν,2500Å)
X-ray – IR ratio:
αIX = 0.233⋅log(Lν,2keV/Lν,12.3μm)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
10
XBS-QSO2 vs XBS-QSO1
(preliminary results)
XBS-QSO2
XBS-QSO1 (Marchese et al. 2012)
XBS QSO1
XBS QSO2
From literature:
data from Vasudevan & Fabian (2007)
dotted line from Marconi et al. (2004)
dashed range from Hopkins et al. (2007)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
11
XBS-QSO2 vs XBS-QSO1
(preliminary results)
XBS-QSO2
XBS-QSO1 (Caccianiga et al. 2013)
XBS QSO1
XBS QSO2
Relatively low Eddington ratios, λ between 0.007 and 0.3
BUT bulge vs tot…
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
12
UV vs X-rays
(preliminary results)
XBS-QSO2
SDSS data from literature:
dashed line: Vignali et al. (2003)
data, long-dashed line: Strateva et al. (2005)
data, shaded area, dotted line: Steffen et al. (2006)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
13
mIR vs X-rays
A.  Dust-Obscured Galaxies (DOGs)
(e.g. Polletta et al. 2008, Georgantopoulos et al. 2008, Fiore et al. 2008, Lanzuisi et al. 2009)
mIR selection: F24µm/FR > 2000 & F24µm > 1.3 mJy
²  lower redshift:
zX-sel ≲ 1
vs
zmIR-sel ⊆(0.5-2.5)
²  similar IR colours and luminosities
²  strongly different mid-IR/optical flux ratios
■ 
XBS obsc. QSO
o  DOGs with X-ray data
from Lanzuisi et al. (2009)
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
14
B.  Unabsorbed X-rays vs observed 12.3 µm
(e.g. Horst et al. 2006,2008; Gandhi et al. 2009; Horst et al. 2009)
²  Core measurements @12.3 µm vs intrinsic X-ray luminosities of local Seyfert with high-resolution mIR
data: tight relation, irrespective of the amount of obscuration
⇒
dust clouds have
significant clumpiness in the AGN tori.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
15
B.  Unabsorbed X-rays vs observed 12.3 µm
(e.g. Horst et al. 2006,2008; Gandhi et al. 2009; Horst et al. 2009)
²  Core measurements @12.3 µm vs intrinsic X-ray luminosities of local Seyfert with high-resolution mIR
data: tight relation, irrespective of the amount of obscuration
⇒
dust clouds have
significant clumpiness in the AGN tori.
Assuming the 12.3 µm (restframe) emission as recovered
by our modeling of the
nuclear emission, we extend
this relation also in the QSO
regime.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
16
Summary
²  Complete sample of X-ray high-luminosity AGN: 14 obscured QSOs
from the XBS.
²  Multiwavelength observations (Spitzer, WISE, SDSS, GALEX…):
separation of nuclear and host-galaxy emission.
²  SED properties, such as kX & αOX: X-rays more important in the
energetic budget than in XBS-QSO1, althought on average
consistent within the errors with optically-selected AGN.
²  MBH, Lbol: relatively low Eddington ratios.
²  X-ray vs. mIR:
Ø 
comparison with samples selected at different energies;
Ø 
X-rays and 12.3 µm as proxies of the intrinsic emission.
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
17
L.Ballo (OABrera)
The XMM-BSS QSO2 sample
SAIt 2013
09/05/2013
18