Lesson 5.1 Skills Practice Name Date We Like to Move It! Translating, Rotating, and Reflecting Geometric Figures Problem Set Transform each given geometric figure on the coordinate plane as described. 1. Translate trapezoid ABCD 11 units to the right. y A A9 B 8 B9 6 C D 4 C9 2 D9 0 28 26 24 22 2 4 6 8 x 22 24 26 28 5 2. Translate triangle EFG 8 units up. y 8 © Carnegie Learning 6 4 2 0 28 26 24 22 22 2 4 6 E 8 x F 24 26 28 G Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 513 513 21/06/13 11:20 AM Lesson 5.1 Skills Practice page 2 3. Rotate rectangle HJKL 90° counterclockwise about the origin. y 8 H J L K 6 4 2 0 28 26 24 22 2 4 6 8 x 22 24 26 28 4. Rotate triangle MNP 180° counterclockwise about the origin. y 8 6 5 4 2 0 22 2 4 26 514 8 x N 24 28 6 M P © Carnegie Learning 28 26 24 22 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 514 06/06/13 5:40 PM Lesson 5.1 Skills Practice page 3 Name Date 5. Rotate trapezoid QRST 90° counterclockwise about the origin. y 8 6 4 2 0 28 26 24 22 2 4 6 8 x 22 R 24 S 26 28 Q T 6. Rotate parallelogram WXYZ 180° counterclockwise about the origin. y X 8 5 Y 6 4 W © Carnegie Learning 2 Z 0 28 26 24 22 2 4 6 8 x 22 24 26 28 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 515 515 06/06/13 5:40 PM Lesson 5.1 Skills Practice page 4 7. Reflect triangle ABC over the y-axis. y B 8 A 6 4 2 C 0 28 26 24 22 2 4 6 8 2 4 6 8 x 22 24 26 28 8. Reflect parallelogram DEFG over the x-axis. y 8 6 5 4 2 0 28 26 24 22 x 22 D F G 24 26 28 516 © Carnegie Learning E Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 516 06/06/13 5:40 PM Lesson 5.1 Skills Practice page 5 Name Date 9. Reflect trapezoid HJKL over the x-axis. y J K 8 6 4 H 2 0 28 26 24 22 L 2 4 6 x 8 22 24 26 28 10. Reflect quadrilateral MNPQ over the y-axis. y 5 8 6 4 © Carnegie Learning 2 0 28 26 24 22 22 2 4 6 N x 8 P 24 26 28 M Q Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 517 517 06/06/13 5:40 PM Lesson 5.1 Skills Practice page 6 Determine the coordinates of each translated image without graphing. 11. The vertices of triangle ABC are A (5, 3), B (2, 8), and C (24, 5). Translate the triangle 6 units to the left to form triangle A B C. The vertices of triangle A B C are A (21, 3), B (24, 8), and C (210, 5). 12. The vertices of rectangle DEFG are D (27, 1), E (27, 8), F (1, 8), and G (1, 1). Translate the rectangle 10 units down to form rectangle D E F G. 13. The vertices of parallelogram HJKL are H (2, 26), J (3, 21), K (7, 21), and L (6, 26). Translate the parallelogram 7 units up to form parallelogram H J K L. 14. The vertices of trapezoid MNPQ are M (26, 25), N (0, 25), P (21, 2), and Q (24, 2). Translate the trapezoid 4 units to the right to form trapezoid M N P Q. 15. The vertices of triangle RST are R (0, 3), S (2, 7), and T (3, 21). Translate the triangle 5 units to the left and 3 units up to form triangle R S T. 5 16. The vertices of quadrilateral WXYZ are W (210, 8), X (22, 21), Y (0, 0), and Z (3, 7). Translate the quadrilateral 5 units to the right and 8 units down to form quadrilateral W X Y Z. 17. The vertices of triangle ABC are A (5, 3), B (2, 8), and C (24, 5). Rotate the triangle about the origin 90° counterclockwise to form triangle A B C. The vertices of triangle A B C are A (23, 5), B (28, 2), and C (25, 24). 18. The vertices of rectangle DEFG are D (27, 1), E (27, 8), F (1, 8), and G (1, 1). Rotate the rectangle about the origin 180° counterclockwise to form rectangle D E F G. 518 © Carnegie Learning Determine the coordinates of each rotated image without graphing. Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 518 06/06/13 5:40 PM Lesson 5.1 Skills Practice page 7 Name Date 19. The vertices of parallelogram HJKL are H (2, 26), J (3, 21), K (7, 21), and L (6, 26). Rotate the parallelogram about the origin 90° counterclockwise to form parallelogram H J K L. 20. The vertices of trapezoid MNPQ are M (26, 25), N (0, 25), P (21, 2), and Q (24, 2). Rotate the trapezoid about the origin 180° counterclockwise to form trapezoid M N P Q. 21. The vertices of triangle RST are R (0, 3), S (2, 7), and T (3, 21). Rotate the triangle about the origin 90° counterclockwise to form triangle R S T. 22. The vertices of quadrilateral WXYZ are W (210, 8), X (22, 21), Y (0, 0), and Z (3, 7). Rotate the quadrilateral about the origin 180° counterclockwise to form quadrilateral W X Y Z. Determine the coordinates of each reflected image without graphing. 23. The vertices of triangle ABC are A (5, 3), B (2, 8), and C (24, 5). Reflect the triangle over the x-axis to form triangle A B C. The vertices of triangle A B C are A (5, 23), B (2, 28), and C (24, 25). 5 © Carnegie Learning 24. The vertices of rectangle DEFG are D (27, 1), E (27, 8), F (1, 8), and G (1, 1). Reflect the rectangle over the y-axis to form rectangle D E F G. 25. The vertices of parallelogram HJKL are H (2, 26), J (3, 21), K (7, 21), and L (6, 26). Reflect the parallelogram over the x-axis to form parallelogram H J K L. 26. The vertices of trapezoid MNPQ are M (26, 25), N (0, 25), P (21, 2), and Q (24, 2). Reflect the trapezoid over the y-axis to form trapezoid M N P Q. Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 519 519 06/06/13 5:40 PM Lesson 5.1 Skills Practice page 8 27. The vertices of triangle RST are R (0, 3), S (2, 7), and T (3, 21). Reflect the triangle over the x-axis to form triangle R S T. 28. The vertices of quadrilateral WXYZ are W (210, 8), X (22, 21), Y (0, 0), and Z (3, 7). Reflect the quadrilateral over the y-axis to form quadrilateral W X Y Z. © Carnegie Learning 5 520 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 520 06/06/13 5:40 PM Lesson 5.2 Skills Practice Name Date Hey, Haven’t I Seen You Before? Congruent Triangles Problem Set Identify the transformation used to create nXYZ on each coordinate plane. Identify the congruent angles and the congruent sides. Then, write a triangle congruence statement. 1. Triangle BCA was reflected over the x-axis to create triangle XYZ. y 8 ___ ___ ___ A 4 B 2 0 28 26 24 22 C 2 22 ___ ___ BC > XY , CA > YZ , and BA > XZ ; /B > /X, /C > /Y, and /A > /Z. 6 4 6 X 8 nBCA > nXYZ x Y 24 26 Z 28 2. 5 y X 8 © Carnegie Learning 6 4 Z Y 2 0 28 26 24 22 22 2 4 6 8 x D 24 26 28 E F Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 521 521 21/06/13 1:30 PM Lesson 5.2 Skills Practice 3. page 2 y P 8 6 4 2 28 26 24 22 Z X M 0 2 T 4 6 8 x 22 24 26 28 Y 4. y 8 B D X 6 Z 4 5 N 2 Y 0 28 26 24 22 2 4 6 8 x 22 24 28 522 © Carnegie Learning 26 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 522 06/06/13 5:40 PM Lesson 5.2 Skills Practice page 3 Name Date 5. y Y 8 6 X 4 Z 2 0 28 26 24 22 F 2 4 6 x 8 22 24 A 26 28 W 6. y 8 Z 6 4 X 2 0 28 26 24 22 2 22 © Carnegie Learning 24 5 Y 4 6 8 x Q M 26 28 R Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 523 523 06/06/13 5:40 PM Lesson 5.2 Skills Practice 7. page 4 y Y 8 Z N 6 4 R 2 G X 28 26 24 22 0 2 4 6 8 2 4 6 8 x 22 24 26 28 8. y 8 Y 6 4 5 X Z 2 0 28 26 24 22 22 x W 24 H 28 524 F © Carnegie Learning 26 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 524 06/06/13 5:40 PM Lesson 5.2 Skills Practice page 5 Name Date 9. y T Y A 8 Z 6 4 V 2 X 0 28 26 24 22 2 4 6 x 8 22 24 26 28 10. y M 8 6 5 4 G 2 28 26 24 22 Y © Carnegie Learning X B 0 2 4 6 8 x 22 24 26 28 Z Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 525 525 06/06/13 5:40 PM Lesson 5.2 Skills Practice page 6 List the corresponding sides and angles, using congruence symbols, for each pair of triangles represented by the given congruence statement. 11. nJPM > nTRW ___ ___ ____ ____ ___ ____ JP , PM > RW , and JM > TW ; /J > /T, /P > /R, and /M > /W. > TR 12. nAEU > nBCD 13. nLUV > nMTH 14. nRWB > nVCQ 15. nTOM > nBEN 16. nJKL > nRST 17. nCAT > nSUP 18. nTOP > nGUN 526 © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 526 06/06/13 5:40 PM Lesson 5.3 Skills Practice Name Date It’s All About the Sides Side-Side-Side Congruence Theorem Vocabulary Define the term in your own words. 1. Side-Side-Side (SSS) Congruence Theorem Problem Set Determine whether each pair of given triangles are congruent by SSS. Use the Distance Formula and a protractor when necessary. 1. AB 5 DE 5 3 y AC 5 DF 5 7 8 B ___________________ 6 d 5 √ ( x2 2 x1 )2 1 ( y2 2 y1 )2 4 BC 5 √( 9 2 2 )2 1 ( 4 2 7 )2 _________________ A C __________ BC 5 √ 72 1 (23)2 2 0 28 26 24 22 22 F 2 4 6 8 D 24 26 © Carnegie Learning 28 x _______ BC 5 √ 49 1 9 5 ___ BC 5 √58 < 7.62 ___________________ E d 5 √( x2 2 x1 )2 1 ( y2 2 y1 )2 ______________________ EF 5 √( 1 2 8 )21 ( 23 2 (26) )2 __________ EF 5 √ ( 27 )2 1 32 _______ EF 5 √ 49 1 9 ___ EF 5 √58 < 7.62 BC 5 EF The triangles are congruent by the SSS Congruence Theorem. Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 527 527 21/06/13 11:21 AM Lesson 5.3 Skills Practice 2. page 2 y J 8 6 4 G H 2 0 28 26 24 22 2 22 L 4 6 x 8 K 24 26 28 M © Carnegie Learning 5 528 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 528 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 3 Name Date 3. y B 8 6 4 R G 2 0 28 26 24 22 2 4 6 8 x 22 D M 24 26 28 A © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 529 529 06/06/13 5:40 PM Lesson 5.3 Skills Practice 4. page 4 y 8 P 6 4 M N 2 0 28 26 24 22 Y 2 22 4 6 8 x X 24 26 Z 28 © Carnegie Learning 5 530 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 530 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 5 Name Date 5. y C W 8 M 6 4 2 0 28 26 24 22 2 4 6 8 x 22 Q 24 P 26 S 28 © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 531 531 06/06/13 5:40 PM Lesson 5.3 Skills Practice 6. page 6 y 8 N 6 P 4 2 Q 0 28 26 24 22 2 4 6 8 x 22 T 24 26 R S 28 © Carnegie Learning 5 532 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 532 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 7 Name Date Perform the transformation described on each given triangle. Then, verify that the triangles are congruent by SSS. Use the Distance Formula and a protractor when necessary. 7. Reflect nABC over the y-axis to form nXYZ. Verify that nABC > nXYZ by SSS. AB 5 XY 5 12 y BC 5 YZ 5 5 8 A ___________________ X 6 d 5 √ ( x2 2 x1 )2 1 ( y2 2 y1 )2 _______________________ 4 AC 5 √ ( 24 2 (29) ) 21 ( 26 2 6 )2 2 )2 AC 5 √ 52 1 ( 212 ___________ 0 28 26 24 22 2 4 6 x 8 _________ AC 5 √ 25 1 144 ____ 22 AC 5 √ 169 5 13 24 ___________________ B C 26 28 Z Y d 5 √( x2 2 x1 )21 ( y2 2 y1 )2 ___________________ XZ 5 √( 4 2 9 )2 1 ( 26 2 6 )2 ______________ )2 XZ 5 √( 25 )2 1 ( 212 _________ XZ 5 √25 1 144 ____ XZ 5 √169 5 13 AC 5 XZ 5 © Carnegie Learning The triangles are congruent by the SSS Congruence Theorem. Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 533 533 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 8 8. Rotate nDEF 180° clockwise about the origin to form nQRS. Verify that nDEF > nQRS by SSS. y 8 D 6 4 E F 2 0 28 26 24 22 2 4 6 8 x 22 24 26 28 © Carnegie Learning 5 534 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 534 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 9 Name Date 9. Reflect nJKL over the x-axis to form nMNP. Verify that nJKL > nMNP by SSS. y 8 6 4 2 0 28 26 24 22 2 4 6 x 8 22 24 J K 26 28 L © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 535 535 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 10 10. Translate nHMZ 10 units to the left and 1 unit down to form nBNY. Verify that nHMZ > nBNY by SSS. y 8 6 M 4 H 2 0 28 26 24 22 2 4 6 8 x 22 24 26 Z 28 © Carnegie Learning 5 536 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 536 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 11 Name Date 11. Rotate nAFP 90° counterclockwise about the origin to form nDHW. Verify that nAFP > nDHW by SSS. y A 8 6 4 P 2 F 0 28 26 24 22 2 4 6 8 x 22 24 26 28 © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 537 537 06/06/13 5:40 PM Lesson 5.3 Skills Practice page 12 12. Translate nACE 3 units to the right and 9 units up to form nJKQ. Verify that nACE > nJKQ by SSS. y 8 6 4 2 0 28 26 24 22 2 4 6 8 x 22 A 24 26 C 28 E © Carnegie Learning 5 538 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 538 06/06/13 5:40 PM Lesson 5.4 Skills Practice Name Date Make Sure the Angle Is Included Side-Angle-Side Congruence Theorem Vocabulary Describe how to prove the given triangles are congruent. Use the Side-Angle-Side Congruence Theorem in your answer. 1. y A 8 6 C B 4 2 0 28 26 24 22 22 2 4 X 6 8 x Z 24 26 28 Y © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 539 539 21/06/13 11:22 AM Lesson 5.4 Skills Practice page 2 Problem Set Determine whether each pair of given triangles are congruent by SAS. Use the Distance Formula and a protractor when necessary. 1. Determine whether nABC is congruent to nDEF by SAS. AB 5 DE 5 5 y BC 5 EF 5 7 m/B 5 m/E 5 90° The triangles are congruent by the SAS Congruence Theorem. A 8 6 4 B 2 28 26 24 22 F 0 2 C 4 6 8 x 22 24 26 28 E D 2. Determine whether nCKY is congruent to nDLZ by SAS. y C 8 5 L Z 6 4 2 2 4 6 22 Y K 24 26 28 540 D 8 x © Carnegie Learning 0 28 26 24 22 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 540 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 3 Name Date 3. Determine whether nFMR is congruent to nJQW by SAS. y 8 M 6 F 4 W 2 0 28 26 24 22 2 4 6 8 x 22 R 24 J 26 Q 28 4. Determine whether nQRS is congruent to nXYZ by SAS. y 8 Q 5 R 6 4 © Carnegie Learning S 2 0 28 26 24 22 2 4 6 8 x 22 24 Z 26 Y 28 X Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 541 541 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 4 5. Determine whether nJKL is congruent to nMNP by SAS. y K 8 J 6 4 L 2 0 28 26 24 22 2 4 6 8 x 22 P 24 M 26 28 N © Carnegie Learning 5 542 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 542 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 5 Name Date 6. Determine whether nATV is congruent to nDNP by SAS. y T 8 A 6 4 2 V 0 28 26 24 22 2 4 6 8 22 24 x N D 26 28 P © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 543 543 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 6 Perform the transformation described on each given triangle. Then, verify that the triangles are congruent by SAS. Use the Distance Formula and a protractor when necessary. 7. Reflect nABC over the y-axis to form nXYZ. Verify that nABC > nXYZ by SAS. AB 5 XY 5 5 y A B Y 8 AC 5 XZ 5 5 m/A 5 m/X 5 90° The triangles are congruent by the SAS Congruence Theorem. X 6 4 C Z 2 0 28 26 24 22 2 4 6 x 8 22 24 26 28 8. Translate nDEF 11 units to the left and 10 units down to form nQRS. Verify that nDEF > nQRS by SAS. y 8 D 6 5 4 F E 2 0 28 26 24 22 2 4 6 8 x 22 26 28 544 © Carnegie Learning 24 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 544 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 7 Name Date 9. Rotate nJKL 180° counterclockwise about the origin to form nMNP. Verify that nJKL > nMNP by SAS. y 8 6 4 2 0 28 26 24 22 2 4 6 8 22 x L 24 J K 26 28 10. Reflect nAFP over the y-axis to form nDHW. Verify that nAFP > nDHW by SAS. y A 8 5 F 6 4 © Carnegie Learning 2 0 28 26 24 22 2 4 6 x 8 22 24 26 28 P Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 545 545 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 8 11. Translate nACE 4 units to the right and 4 units down to form nJKQ. Verify that nACE > nJKQ by SAS. y A 8 E C 6 4 2 0 28 26 24 22 2 4 6 8 x 22 24 26 28 © Carnegie Learning 5 546 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 546 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 9 Name Date 12. Rotate nBMZ 90° counterclockwise about the origin to form nDRT. Verify that nBMZ > nDRT by SAS. y B 8 M 6 4 Z 2 0 28 26 24 22 2 4 6 8 x 22 24 26 28 © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 547 547 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 10 Determine the angle measure or side measure that is needed in order to prove that each set of triangles are congruent by SAS. 13. In nART, AR 5 12, RT 5 8, and m/R 5 70°. In nBSW, BS 5 12, and m/S 5 70°. SW 5 8 14. In nCDE, CD 5 7, and DE 5 11. In nFGH, FG 5 7, GH 5 11, and m/G 5 45°. 15. In nJKL, JK 5 2, KL 5 3, and m/K 5 60°. In nMNP, NP 5 3, and m/N 5 60°. 16. In nQRS, QS 5 6, RS 5 4, and m/S 5 20°. In nTUV, TV 5 6, and UV 5 4. 17. T Z 11 in. 15 in. 5 D 15 in. 65° 18. 11 in. W R K L 8 ft T 548 8 ft M X 20 ft N © Carnegie Learning B Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 548 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 11 Name Date 19. A O 7m C 50° 7m 6m G 6m D T 20. V E 14 ft R 35° P 5 12 ft 12 ft © Carnegie Learning W 35° M Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 549 549 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 12 Determine whether there is enough information to prove that each pair of triangles are congruent by SSS or SAS. Write the congruence statements to justify your reasoning. ? ? 21. nMNP > nPQM 22. nWXY > nZYX W N X 30° 18 in. 10 in. 7 ft M 7 ft P 10 in. 30° Y 18 in. Z Q The triangles are congruent by SSS. ____ ___ ___ ____ NP > QM ____ ____ MP > PM MN > PQ ? ? 23. nBCE > nDAF 24. nHJM > nMKH J B A F 2 cm 2 cm E C H D 550 M © Carnegie Learning 5 K Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 550 06/06/13 5:40 PM Lesson 5.4 Skills Practice page 13 Name Date ? ? 25. nPQR > nSTW 26. nMAT > nMHT S Q A T R M P T W ? ? 27. nBDW > nBRN 5m H 28. nABC > nEDC D 3m N A B B C 5m D 3m W E © Carnegie Learning R 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 551 551 06/06/13 5:40 PM © Carnegie Learning 5 552 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 552 06/06/13 5:40 PM Lesson 5.5 Skills Practice Name Date Angle to the Left of Me, Angle to the Right of Me Angle-Side-Angle Congruence Theorem Vocabulary Describe how to prove the given triangles are congruent. Use the Angle-Side-Angle Congruence Theorem in your answer. 1. y 8 P N 6 4 2 M 0 28 26 24 22 A 2 4 6 8 x 22 24 26 C 28 B © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 553 553 21/06/13 11:24 AM Lesson 5.5 Skills Practice page 2 Problem Set Determine whether each pair of given triangles are congruent by ASA. Use the Distance Formula and a protractor when necessary. 1. Determine whether nABC is congruent to nDEF by ASA. m/B 5 m/E 5 90° m/C 5 m/F 5 45° y A 8 BC 5 EF 5 5 The triangles are congruent by the ASA Congruence Theorem. 6 4 B C 2 0 28 26 24 22 2 22 4 6 x 8 E D 24 26 28 F 2. Determine whether nNPQ is congruent to nRST by ASA. y 5 N 8 6 Q P 2 0 28 26 24 22 S 2 22 24 26 4 6 8 x © Carnegie Learning 4 28 R 554 T Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 554 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 3 Name Date 3. Determine whether nAGP is congruent to nBHQ by ASA. y P 8 6 4 A G 2 0 28 26 24 22 2 4 6 8 x 22 Q 24 26 28 H B 4. Determine whether nCKY is congruent to nDLZ by ASA. y 8 5 C K 6 Z 4 © Carnegie Learning 2 0 28 26 24 22 2 4 6 8 x 22 24 Y 26 D L 28 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 555 555 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 4 5. Determine whether nFMR is congruent to nJQW by ASA. y M 8 6 R 4 2 F 28 26 24 22 0 J 22 2 24 4 6 x 8 W 26 28 Q 6. Determine whether nGHJ is congruent to nKLM by ASA. y G 8 5 H 6 4 L 2 0 28 26 24 22 4 6 x 8 22 24 26 M 28 K 556 © Carnegie Learning J 2 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 556 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 5 Name Date Perform the transformation described on each given triangle. Then, verify that the triangles are congruent by ASA. Use the Distance Formula and a protractor when necessary. 7. Reflect nABC over the y-axis to form nXYZ. Verify that nABC > nXYZ by SAS. m/C 5 m/Z 5 90° m/A 5 m/X 5 63° y 8 AC 5 XZ 5 3 6 The triangles are congruent by the ASA Congruence Theorem. 4 2 0 28 26 24 22 2 22 X 4 6 x 8 A 24 Y 26 Z C B 28 8. Rotate nDEF 90° clockwise about the origin to form nQRS. Verify that nDEF > nQRS by SAS. y 5 D 8 © Carnegie Learning 6 4 E F 2 0 28 26 24 22 2 4 6 8 x 22 24 26 28 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 557 557 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 6 9. Translate nHMZ 6 units to the right and 10 units up to form nBNY. Verify that nHMZ > nBNY by ASA. y 8 6 4 2 0 28 26 24 22 2 4 6 8 x 22 H 24 26 M Z 28 10. Reflect nAFP over the y-axis to form nDHW. Verify that nAFP > nDHW by ASA. y 5 A F 8 6 4 0 28 26 24 22 2 22 P 24 26 28 558 4 6 8 x © Carnegie Learning 2 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 558 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 7 Name Date 11. Rotate nACE 180° counterclockwise about the origin to form nJKQ. Verify that nACE > nJKQ by SAS. y C 8 6 4 A 2 E 0 28 26 24 22 2 4 6 8 x 22 24 26 28 12. Reflect nJKL over the x-axis to form nMNP. Verify that nJKL > nMNP by ASA. y J 5 8 K 6 L 4 © Carnegie Learning 2 0 28 26 24 22 2 4 6 8 x 22 24 26 28 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 559 559 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 8 Determine the angle measure or side measure that is needed in order to prove that each set of triangles are congruent by ASA. 13. In nADZ, m/A 5 20°, AD 5 9, and m/D 5 70°. In nBEN, BE 5 9, and m/E 5 70°. m/B 5 20° 14. In nCUP, m/U 5 45°, and m/P 5 55°. In nHAT, AT 5 14, m/A 5 45°, and m/T 5 55°. 15. In nHOW, m/H 5 10°, HW 5 3, and m/W 5 60°. In nFAR, FR 5 3, and m/F 5 10°. 16. In nDRY, m/D 5 100°, DR 5 25, and m/R 5 30°. In nWET, m/W 5 100°, and m/E 5 30°. 17. B D W T 8 ft 40° R Z 8 ft 18. K M 30° 7 in. 60° X 30° 60° T 560 L N © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 560 06/06/13 5:40 PM Lesson 5.5 Skills Practice page 9 Name Date 19. G R F 18 m 60° 18 m W 70° 70° Z S 20. A T P 40° 5 in. 85° 5 85° 40° M © Carnegie Learning X D Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 561 561 06/06/13 5:40 PM © Carnegie Learning 5 562 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 562 06/06/13 5:40 PM Lesson 5.6 Skills Practice Name Date Sides Not Included Angle-Angle-Side Congruence Theorem Vocabulary Describe how to prove the given triangles are congruent. Use the Angle-Angle-Side Congruence Theorem in your answer. y 1. B C 8 6 4 A 2 0 28 26 24 22 22 2 4 6 8 x X 24 26 28 Z Y © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 563 563 21/06/13 11:25 AM Lesson 5.6 Skills Practice page 2 Problem Set Determine whether each set of given triangles are congruent by AAS. Use the Distance Formula and a protractor when necessary. 1. Determine whether nABC is congruent to nDEF by AAS. m/A 5 m/D 5 45° y A m/B 5 m/E 5 45° 8 BC 5 EF 5 7 6 The triangles are congruent by the AAS Congruence Theorem. 4 C B 2 0 28 26 24 22 22 2 D 4 6 8 x F 24 26 28 E 2. Determine whether nGHJ is congruent to nKLM by AAS. 5 y G 8 6 2 J 0 28 26 24 22 L H 2 22 4 M 24 6 8 x © Carnegie Learning 4 26 28 K 564 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 564 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 3 Name Date 3. Determine whether nAGP is congruent to nBHQ by AAS. y 8 G Q 6 B 4 2 0 28 26 24 22 2 4 6 8 x 22 24 A P 26 H 28 4. Determine whether nCKY is congruent to nDLZ by AAS. y C 8 5 6 4 © Carnegie Learning Y 0 28 26 24 22 L K 2 22 2 4 6 8 x Z 24 26 28 D Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 565 565 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 4 5. Determine whether nFMR is congruent to nJQW by AAS. y F M 8 6 4 R 2 0 28 26 24 22 2 4 6 8 x 22 W 24 26 J 28 Q 6. Determine whether nNPQ is congruent to nRST by AAS. y P T 8 5 6 N 4 2 0 28 26 24 22 2 4 6 8 x 24 R 26 Q 566 28 S © Carnegie Learning 22 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 566 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 5 Name Date Perform the transformation described on each given triangle. Then, verify that the triangles are congruent by AAS. Use the Distance Formula and a protractor when necessary. 7. Reflect nABC over the y-axis to form nXYZ. Verify that nABC > nXYZ by AAS. m/B 5 m/Y 5 76° y m/C 5 m/Z 5 90° 8 X AC 5 XZ 5 12 6 A The triangles are congruent by the AAS Congruence Theorem. 4 2 0 28 26 24 22 2 4 6 8 x 22 24 26 Y Z C 28 B 8. Translate nDEF 11 units to the left and 11 units down to form nQRS. Verify that nDEF > nQRS by AAS. y 5 D 8 6 © Carnegie Learning 4 2 F 0 28 26 24 22 2 E 4 6 8 x 22 24 26 28 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 567 567 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 6 9. Rotate nJKL 180° counterclockwise about the origin to form nMNP. Verify that nJKL > nMNP by AAS. y 8 6 4 2 0 28 26 24 22 K 2 4 22 6 8 x L 24 26 J 28 10. Translate nCUP 9 units to the left and 4 units up to form nJAR. Verify that nCUP > nJAR by AAS. y 8 6 5 4 U 2 0 28 26 24 22 2 4 6 8 x 24 26 28 568 C P © Carnegie Learning 22 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 568 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 7 Name Date 11. Reflect nAFP over the x-axis to form nDHW. Verify that nAFP > nDHW by AAS. y 8 6 4 2 0 28 26 24 22 2 4 6 8 x 22 F 24 26 A 28 P © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 569 569 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 8 12. Rotate nACE 270° counterclockwise about the origin to form nJKQ. Verify that nACE > nJKQ by AAS. y 8 C 6 A 4 2 0 28 26 24 22 2 4 6 8 x 22 24 E 26 28 Determine the angle measure or side measure that is needed in order to prove that each set of triangles are congruent by AAS. 5 13. In nANT, m/A 5 30°, m/N 5 60°, and NT 5 5. In nBUG, m/U 5 60°, and UG 5 5. m/B 5 30° 15. In nEMZ, m/E 5 40°, EZ 5 7, and m/M 5 70°. In nDGP, DP 5 7, and m/D 5 40°. © Carnegie Learning 14. In nBCD, m/B 5 25°, and m/D 5 105°. In nRST, RS 5 12, m/R 5 25°, and m/T 5 105°. 16. In nBMX, m/M 5 90°, BM 5 16, and m/X 5 15°. In nCNY, m/N 5 90°, and m/Y 5 15°. 570 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 570 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 9 Name Date 17. B D 18 in. 18 in. T 40° R 40° 70° W Z 18. K X 60° 30° T 3 ft N 30° 60° M L 5 19. F S © Carnegie Learning 50° 60° W 25 m Z 60° 50° R G Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 571 571 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 10 20. A D 20 in. 30° 110° P 20 in. 30° M X T Determine whether there is enough information to prove that each pair of triangles are congruent by ASA or AAS. Write the congruence statements to justify your reasoning. ? ? 22. nEFG > nHJK 21. nABD > nCBD F B A J C D The triangles are congruent by AAS. /BAD > /BCD E K H G /ADB > /CDB ___ ___ BD > BD ? ? 24. nRST > nWZT 23. nMNQ > nPQN N W P S M Q R 572 T Z © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 572 06/06/13 5:41 PM Lesson 5.6 Skills Practice page 11 Name Date ? ? 25. nBDM > nMDH 26. nFGH > nJHG D F J G H 55° 55° B H 60° 60° M ? ? 28. nRST > nWXY 27. nDFG > nJMT D M 65° W S T 50° R 4 ft 4 ft 3 cm 70° 70° 50° © Carnegie Learning 65° F G T J 5 3 cm X Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 573 Y 573 06/06/13 5:41 PM © Carnegie Learning 5 574 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 574 06/06/13 5:41 PM Lesson 5.7 Skills Practice Name Date Any Other Theorems You Forgot to Mention? Using Congruent Triangles Problem Set Construct a perpendicular bisector to each line segment. Connect points on the bisector on either side of the line segment to form the new line segment indicated. ____ ___ 1. MN bisected by PR at point Q P Q M N R ___ 5 ____ 2. HJ bisected by KM at point L © Carnegie Learning H J Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 575 575 21/06/13 11:26 AM Lesson 5.7 Skills Practice ___ ___ ___ ___ 4.PQ bisected by RT at point S at point D 3. AB bisected by CE page 2 A P B ___ Q ___ ___ ____ 6.ST bisected by UW at point V 5. FG bisected by HK at point J F T G 576 S © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 576 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 3 Name Date Use a triangle congruence theorem to complete each proof. Some of the statements and reasons are provided for you. ___ ___ 7. Given: HK is a perpendicular bisector of FJ at point J Prove: Point H is equidistant to points F and G H J F G K ___ ___ ___ ___ 1. FG ' HK , HK bisects FG 1. Definition of perpendicular bisector 2. /FJH and /GJH are right angles. 2. Definition of perpendicular lines 3. /FJH /GJH 3. All right angles are congruent. ___ ___ 4. FJ GJ 4. Definition of bisect 5. HJ HJ 5. Reflexive Property 6. nFJH nGJH 6. SAS Congruence Theorem © Carnegie Learning ___ ___ ___ ____ 7. FH GH 8. Point H is equidistant to points F and G 7. Corresponding sides of congruent triangles are congruent 8. Definition of equidistant Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 577 5 577 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 4 ___ ____ at point N 8. Given: PM is a perpendicular bisector of ST Prove: Point M is equidistant to points S and T P S N T M 1. Definition of perpendicular bisector 2. 2. Definition of perpendicular lines 3. 3. All right angles are congruent. 4. 4. 5. 5. 6. 6. 7. 7. 8. Point M is equidistant to points S and T 8. Definition of equidistant © Carnegie Learning 5 1. 578 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 578 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 5 Name Date ___ ____ 9. Given: CA is a perpendicular bisector of UW at point B Prove: Point C is equidistant to points U and W U C B A W ____ ___ ___ ____ 1. Definition of perpendicular bisector 2. 2. 3. 3. All right angles are congruent. 4. 4. Definition of bisect 5. 5. 6. 6. 7. 7. Corresponding sides of congruent triangles are congruent 8. 8. 5 © Carnegie Learning 1. UW ' CA , CA bisects UW Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 579 579 06/06/13 5:41 PM Lesson 5.7 Skills Practice ___ page 6 ___ at point R 10. Given: TK is a perpendicular bisector of LM Prove: Point T is equidistant to points L and M L T R K M 1. 1. 2. 2. Definition of perpendicular lines 3. 3. All right angles are congruent. 4. 4. ___ 5. Reflexive Property 6. 6. 7. 7. 8. 8. Definition of equidistant © Carnegie Learning 5 ___ 5. TR TR 580 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 580 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 7 Name Date ___ ___ 11. Given: HT is a perpendicular bisector of UV at point P Prove: Point H is equidistant to points U and V V H P T U 1. 1. 2. /UPH and /VPH are right angles. 2. Definition of perpendicular lines 3. 3. 4. 4. Definition of bisect 5. 5. 6. 6. 7. 7. 8. 8. © Carnegie Learning 5 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 581 581 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 8 ___ ____ at point V 12. Given: UW is a perpendicular bisector of CD Prove: Point U is equidistant to points C and D C U V W D 1. Definition of perpendicular bisector 2. 2. 3. /CVU /DVU 3. All right angles are congruent. 4. 4. 5. 5. 6. 6. 7. 7. Corresponding sides of congruent triangles are congruent 8. 8. © Carnegie Learning 5 1. 582 Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 582 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 9 Name Date Complete each diagram to provide a counterexample that proves the indicated theorem does not work for congruent triangles. Explain your reasoning. A hint is provided in each case. 13. Angle-Angle-Angle (Hint: Use vertical angles.) D A C B ___ ___ xtend AC E and , and connect ___BC ___points D and E so that AB is parallel to DE . Since vertical angles are congruent, all three corresponding angles of the two triangles are congruent. The side lengths, however, are different, so nABC is not congruent to nDEC. E 14. Side-Side-Angle (Hint: Draw a triangle that shares /P with the given triangle.) Q 5 P R 15. Angle-Angle-Angle (Hint: Draw a triangle that shares /T with the given triangle.) © Carnegie Learning T S U Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 583 583 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 10 16. Side-Side-Angle (Hint: Draw a triangle that shares /L with the given triangle.) L K M 17. Angle-Angle-Angle (Hint: Draw a triangle that has an angle with the same measure as /E.) E D 18. Side-Side-Angle (Hint: Draw a triangle that shares /U with the given triangle.) T U V 584 © Carnegie Learning 5 F Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 584 06/06/13 5:41 PM Lesson 5.7 Skills Practice page 11 Name Date State the congruence theorem that proves the triangles in each diagram are congruent. If not enough information is given, name an example of information that could be given that you could use to prove congruency. Explain your reasoning. ____ ____ W 19. Given: V W XW Prove: nVYW nXYW Not enough information is given. If /VWY /XWY is given, then nVYW nXYW by the SAS Triangle Congruence Theorem. V ___ ___ X Y C 20. Given: CE is a perpendicular bisector of FD D Prove: nFEC nDEC E 5 F © Carnegie Learning ___ ___ 21. Given: /WST /VUT, ST UT S U Prove: nWST nVUT T W V Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 585 585 06/06/13 5:41 PM Lesson 5.7 Skills Practice ___ page 12 ___ 22. Given: nABD is isosceles with AB AD B Prove: nABC nADC C A ____ ___ ___ ___ D H 23. Given: GH JK , HJ KG Prove: nGHK nJKH G J K 5 ___ ___ 24. Given: PT SR , /PQT /RQS P R T 586 Q S © Carnegie Learning Prove: nTPQ nSRQ Chapter 5 Skills Practice 451448_Skills_Ch05_513-586.indd 586 06/06/13 5:41 PM
© Copyright 2025