Mining the Changes of Medical Behaviors for Clinical Pathways Zhengxing Huang, Chenxi Gan, Huilong Duan 1 Medical behavior changes in CP INRTODUCTION 2 Process mining methods for CP 3 Changes detection for CP h"p://www.ppthi-‐hoo.com INRTODUCTION 1 Medical behavior changes in CP p Medical behavior: medical activity at specific timestamp INRTODUCTION 2 Process mining methods for CP p How changes happen: time-linked process, i.e., medical evolvements on 3 Changes detection for CP conditions & traditions p What changes indicate: Needing direction for clinical pathway improvement, i.e., to include what’s new; to remove what’s unnecessary; minute adjustment. h"p://www.ppthi-‐hoo.com INRTODUCTION 1 Medical behavior changes in CP p CANs: INRTODUCTION analyze from external perspective, e.g., 2 Process mining methods for CP LOS, costs, referral rate; workflow pattern mining; model segmentation; 3 Changes detection for CP variation prediction. p CANNOTs: have insights of medical behavior changes: discover critical medical behaviors; discover and analyze medical behavior changes. h"p://www.ppthi-‐hoo.com INRTODUCTION 1 Medical behavior changes in CP p Objective: For CPs in two different time periods, INRTODUCTION to discover medical behavior patterns; 2 Process mining methods for CP to design similarity measurement indicators; to detect the significant changes between patterns in both activities and timestamps. 3 Changes detection for CP p Contributions: effectively handle the mass mount of complex CP data; provide detailed information on medical p Objective: behavior changes; For CPsreferences provide in two different for clinical time periods, experts to discover medical scientifically design behavior and improve patterns; CPs. h"p://www.ppthi-‐hoo.com METHOD Billedet kan ikke vises. Computere METHOD Preprocessing Billedet kan ikke vises. Computeren har muligvis ikke hukommelse nok til at åbne billedet, eller billedet er muligvis blevet beskadiget. Genstart computeren, og åbn derefter filen igen. Hvis det røde x stadig vises, skal du muligvis slette billedet og indsætte det igen. Clinical Behavior Record Change Pa6ern Detec9on: ① Category ② Similarity Measurement ③ Support Change Measurement Change Pa6erns Clinical Event Log Medical Behavior Pa6erns Mining Medical Behavior Pa6erns h"p://www.ppthi-‐hoo.com Preprocessing Change pattern detection Pattern mining p previous work: Clinical Event Log Clinical Event Summarizing clinical pathways from event logs Z Huang , X Lu, , H Duan , W Fan Journal of Biomedical InformaCcs, 46(1): 111– 127, 2013 Pa9ent Trace p method basis: dynamic programming (DP)-‐based log segmentaCon algorithm; frequent-‐pa"ern mining methods, such as Apriori (Frequent) Medical and FP-‐growth Behavior Pa6ern Support Preprocessing Pattern mining Change pattern detection {a a ∈ φ .A a ∈ φ .A} sim( φ .A,φ .A ) = = φ .A φ .A φ .A + φ .A — {a a ∈ φ .A a ∈ φ .A} φa .A φb .A a a b b a b a b a min(t a+ ,t b+ ) — max(t a— ,t b— ) sim( φa .T ,φb .T ) = max(t ,t ) — min(t + a + b — a ,t — b b ,min(t a+ ,t b+ ) — max(t a— ,t b— ) > 0, ) 0,others similarity in time domains Preprocessing Pattern mining Change pattern detection Change Pa6ern Abs. Implica9on Perished Pa"ern PP pa"erns which have perished Added Pa"ern AP new pa"erns Unexpected Change UC pa"erns that have change in some way Emerging Pa"ern EP pa"erns with high similarity and significant change of support Preprocessing Pattern mining Change pattern detection Perished Pattern SIM<PMTL Log A Pa6ern set A SUPP α SIM Pa6ern set B Log B SIM>PMTH SC>=SCT? PMTL≤SIM≤PMT H SUPP Added Pattern Y Emerging Pattern Unexpected Change EXPERIMENTS & RESULTS Pattern mining Crucial clinical activities with represented alphabets Change pattern detection Abstraction a b c d e f g h i j k l m n o p q r s t u v w x ya yb z ct Clinical activities Admission Color ultrasound examination ECG Pulmonary function tests Cardiac color Doppler ultrasound Catheterization Venous catheterization Indwelling urethral catheterization start Indwelling urethral catheterization complete Postoperative drainage start Postoperative drainage complete Atomizing inhalation Pleural puncture Radical surgery of lung cancer Bronchoscopic treatment Pleaural effusion B-ultrasound and positioning Determination of left ventricular function Configuration of anti-tumor chemotherapy Infrared treatment Cleansing enema Electrolyte Liver and kidney of sugar Routine blood test High-sensitivity CRP Anesthetic (isoflurane) Anesthetic (sevoflurane) Discharge CT examination Preprocessing Preprocessing Pattern mining Change pattern detection Billedet kan ikke vises. Computeren har muligvis ikke hukommelse nok til at åbne billedet, eller billedet er muligvis blevet beskadiget. Genstart computeren, og åbn derefter filen igen. Hvis det røde x stadig vises, skal du muligvis slette billedet og indsætte det igen. Frequent medical behavior patterns minsupp=0.3 p time stages: Admission (Ad.) p time Pre-‐OP Days stages: Admission (Ad.) Pre-‐OP Days OperaCon (OP) Days Preprocessing Pattern mining Change pattern detection Similarity values on different values of α Log No. α=0 α = .25 α = .5 α =.75 α =1 1 1.000 0.854 0.708 0.562 0.417 2 1.000 0.886 0.773 0.659 0.545 3 0.000 0.019 0.038 0.058 0.077 4 0.933 0.789 0.645 0.501 0.357 2008- 5 0.933 0.789 0.645 0.501 0.357 2009 6 0.389 0.349 0.310 0.270 0.231 (LA) 7 0.389 0.308 0.228 0.150 0.200 8 0.389 0.308 0.228 0.275 0.333 9 0.143 0.157 0.202 0.268 0.333 10 0.143 0.157 0.171 0.186 0.200 11 0.143 0.157 0.171 0.186 0.200 1 1.000 0.854 0.708 0.562 0.417 2 1.000 0.886 0.773 0.659 0.545 3 0.933 0.789 0.645 0.501 0.357 4 0.100 0.158 0.217 0.275 0.333 5 0.143 0.157 0.171 0.214 0.286 2011 (LB) (A ) (B ) Impact of parameter α on SIMa (A), SIMb (B) Preprocessing Pattern mining Change pattern detection α=0.5, SCT=0.4, PMTL=0.2, PMTH=0.7 Results of change pattern detection Patterns Perished pattern a3, a10, a11 Added pattern b5 Unexpected change a4, a5, a6, a7, a8, a9 Emerging pattern Others Details for change patterns Pattern Period Mode Sim.T Sim.A Changes (Abs.) a3 Pre-OP PP 0.000 0.077 - a10 Dis. PP 0.143 0.200 - a11 Dis. PP 0.143 0.200 - None b5 Dis. AP 0.143 0.286 - a1 ( SC( φa1 , φb1 ) = 0 ) a4 OP UC 0.933 0.357 ya, u, v, w, x a2 ( SC( φa 2 , φb1 ) = 0 ) a5 OP UC 0.933 0.357 ya, u, v, w, x a6 Post-OP UC 0.389 0.231 u, v, w, x a7 Post-OP UC 0.389 0.200 u, v, w, x totaled 10 medical behavior change patterns CONCLUSION & DISCUSSION CONCLUSION Innovation p Specialized analysis for medical behavior changes in CP p First employs emerging pattern detection method to CP analysis p core methods: change pa"ern detecCon: similarity measurement & pa6ern divide p contributions: accurate detecCon of 4 types of change pa"erns; detailed review of the changes’ degree and direcCon; p significance: handle the mass mount of complex CP data; summarize medical experiences; help CP analysis and improvement. Summary FUTURE WORK larger data sets & more diseases NOT only within one institution • between different institutions to analyze impacts of factors on clinical pathway execution, such as local environment, healthcare conditions, medical traditions • between templates and actual patterns for CP adherence check h"p://www.ppthi-‐hoo.com REFERENCES 1. Bromberg PM. Shadow and substance: A relational per-spective on clinical process. Psy-choanalytic Psychology 1993: 10(2): 147-168. 2. Huang Z, Lu X and Duan H. On mining clinical pathway patterns from medical behaviors. Artificial Intelligence in Medicine 2012: 35–50. 3. Dong G and Li J. Efficient mining of emerging patterns: Discovering trends and differ-ences. In Proceedings of the fifth International Conference on Knowledge Discovery and Data Mining, San Diego, USA, (SIGKDD 99), 1999: 43-52. 4. Huang Z, Lu X, Duan H and Fan W. Summarizing clinical pathways from event logs. Journal of Biomedical Informatics 2012, accepted. 5. Agrawal R and Srikant R. Fast algorithms for mining asso-ciation rules. 1994 International conference on very large data bases, 1994: 487-499. 6. Han J, Pei J and Yin Y. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowledge Discovery 2004: 8:53-87. 7. Combi C, Gozzi M, Oliboni B, Juarez JM and Marin R. Temporal similarity measures for querying clinical work-flows. Artificial Intelligence in Medicine 2009: 37-54. 8. Peleg M, Mulyar N and Van Der Aalst WMP. Pattern-based analysis of computer-interpretable guidelines: Don't forget the context. Artificial Intelligence in Medicine 2012: 73-74. h"p://www.ppthi-‐hoo.com THANKS ! WELCOME FOR QUESTIONS Biomedical InformaCcs, ZJU
© Copyright 2024