Name———————————————————————— Lesson 2.1 Date ————————————— Practice B For use with the lesson “Use Properties of Exponents” Evaluate the expression. Tell which properties of exponents you used. 1. 25 p 23 2. (27)2(27) 3. 426 p 421 4. (522)2 5. } 23 824 6. } 82 7.1 } 3 2 4 23 8. } 5 427 4 1 2 2 3 Write the answer in scientific notation. 10. (2.6 3 1027)(1.3 3 102) 11. (3.4 3 1021)(3.1 3 1022) 12. (5.8 3 1027)(8.1 3 1012) 13. (4.5 3 104)2 14. (3.7 3 1025)2 15. (7.2 3 1023)3 9.9 3 109 16. }8 1.5 3 10 8.4 3 1026 17. } 2.4 3 109 Lesson 2.1 9. (6.1 3 105)(2.2 3 106) Simplify the expression. Tell which properties of exponents you used. 18. }4 y4 19. } y27 21. (40w 2)25 22. 24. (7c7d 2)22 25. (5g 4h23)23 x 5y28 26. } x 5y26 12a23b 9 28. } 21a 2b25 8e24f 22 29. } 18ef 25 Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. x8 x 16q0r26 27. } 23 27 4q r ( y 4z 2)( y 23z25) 20. (32s 3)6 23. (2m3n21)(8m 4n22) Write an expression for the surface area or volume in terms of x. 1 31. V 5 } π r 2h 3 30. S 5 4πr 2 x 3 4 32. V = } π r 3 3 x2 2x 2 2x 33. Birds Some scientists estimate that there are about 8600 species of birds in the world. The mean number of birds per species is approximately 12,000,000. About how many birds are there in the world? Write your answer in scientific notation. 34. Biology A red blood cell has a diameter of approximately 0.00075 centimeter. If one of the arteries in your body has a diameter of 0.0456 centimeter, how many red blood cells could fit across the artery? Write your answer in scientific notation. Algebra 2 Chapter Resource Book 2-7 Answers for Chapter 2 Lesson 2.1 Use Properties of Exponents 1 17. 23125 18. } 19. 6561 20. 32 8 Teaching Guide 24. 5.983 3 1012 25. 1.76 3 1016 1. 22: 3 2. 81; 9; 729; 729 3. 25; 125; 3125; 3125 4. It is equivalent to the base raised to the sum of the two exponents. 5. A way to write 26. 7.0 3 1027 27. 4.8 3 109 28. 3.534 3 103 Investigating Algebra Activity 1. a. (6 p 6 p 6 p 6)(6 p 6 p 6 p 6 p 6 p 6 p 6); 611 b. (3 p 3 p 3 p 3)(3 p 3 p 3 p 3)(3 p 3 p 3 p 3); 312 5p5p5p5p5p5p5p5 c. }} 5 5 p 5 p 5 p 5; 54 5p5p5p5 4p4p4p4p4 4 4 4 4 4 4 d. } p } p } p } p } 5 }} 7 p 7 p 7 p ; } 7 p 7 75 7 7 7 7 7 2. See answers to Exercise 1. 3. For the product 5 21. 5.27 3 105 22. 5.26 3 1025 23. 2.3 3 1023 29. 7.84 3 106 30. 1.849 3 105 31. 6.0 3 102 32. 7.5 3 101 33–40. Check properties. 33. b6 34. x 2 35. s14 36. 25y 2 37. z 4 16 x3 1 38. } 4 39. } 40. } 2 41. 3.26 3 108 27 m n 4 42. about 2.65 3 10 dollars Practice Level B 1– 8. Check properties. 1. 256 2. 2343 8 1 1 1 1 4. } 625 5. } 6. } 7. } 27 3. } 16,384 256 262,144 125 8. } 9. 1.342 3 1012 10. 3.38 3 1025 64 of powers property, the exponents in the Simplified form column are the sum of the exponents in the Exponential expression column. For the power of a power property, the exponents in the Simplified form column are the product of the exponents in the Exponential expression column. For the quotient of powers property, the exponents in the Simplified form column are the difference of the exponents in the Exponential expression column. For the power of a quotient property, the exponent in the Exponential expression column is applied to the numerator and denominator to give the expression in the Simplified form column. 4. Sample answer: The product of powers property means that if you are multiplying like bases, the exponents will be added. The power of a power property means that if you are raising a power to a power, the exponents will be multiplied. The quotient of a power property means that if you are dividing like bases, the exponents will be subtracted. The power of a quotient property means that if you are raising a quotient to a power, you will raise both the numerator and denominator to that power. 11. 1.054 3 1022 12. 4.698 3 106 Practice Level A 2m7 45c13 9 27r 6 } } } 16. 2 } 17. 18. 1 19. 20. n6 d5 x 14y 2 q 3s 3 1 21. } 22. b 18 23. Sample answer: a 4b 4c 5 z12 24. Sample answer: 6x 3y 4z 25. Sample answer: 1 1. 9 2. 125 3. 32 4. 256 5. 1 6. } 2 1 1 7. } 49 8. } 1,000,000 9–20. Check properties. 9. 1024 10. 2243 11. 15,625 12. 1 25 1 13. } 32 14. 27 15. 1,000,000,000 16. } 36 answers numbers using powers of 10 having the form c 3 10n where 1 ≤ c < 10 and n is an integer; 6.4 3 107; 3.4 3 1024 Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. Polynomials and Polynomial Functions 13. 2.025 3 109 14. 1.369 3 1029 15. 3.73248 3 1027 16. 6.6 3 101 17. 3.5 3 10215 18–29. Check properties. 18. x 4 19. y 11 20. 531,441s18 y 16m7 1 1 } } 21. } 22. 23. 24. } 14 4 10 3 3 w z n 49c d h9 4b14 1 3 25. } 12 26. } 2 27. 4q r 28. } 5 7a 125g y 4f 3 4 4 29. } 5 30. S 5 } 9 π x 2 31. V 5 } 3 π x 4 9e 32 32. V 5 } 3 π x 6 33. about 1.03 3 1011 34. about 6.1 3 101 Practice Level C 1– 8. Check properties. 1. 25 2. 2187 64 512 3. 1024 4. 256 5. } 6. 729 7. } 19,683 27 1 8. } 9. 2.139 3 105 10. 9.72 3 1026 125 11. 1.6 3 105 12. 2.0 3 1023 13. 1.0 3 1026 14. 2.5 3 101 15–22. Check properties. 15. x 6 2 π 16m 6n17 26. about 1.665 3 1025 27. a. }3 b. } 6 Algebra 2 Chapter Resource Book A19
© Copyright 2025