Outline Forward & Inverse kinematics EE 451 - Kinematics & Inverse Kinematics H.I. Bozma Electric Electronic Engineering Bogazici University October 27, 2014 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Problem Statement I I Kinematics: Given c ∈ C, find a map f : C → W s.t. w = f (c) where w ∈ W Inverse Kinematics: Given w ∈ W, find a map f −1 : W → C s.t. c = f −1 (w ) H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Robotic Systems I A set of links connected by joints I Simple joints: Single DOF qi where joint variable qi θi ∈ S 1 if joint i is revolute qi = di ∈ R >0 if joint i is prismatic I Complex joints: More DOF at a joint H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Simple Joints: General Robot Topology I n joints → n + 1 links I Joints: 1, . . . , n I Links: 0, . . . , n – Connects link i − 1 to link i Joint i { – Location is fixed wrt link i − 1 – When actuated, link i moves I I Link 0 – The first link Stationary robots Mobile robots H.I. Bozma → → Fixed Moving EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Analysis Procedure - Systematic Analysis I I I I I Attach a coordinate frame oi xi yi zi rigidly to each link i Thus, coordinates of link i are constant when expressed wrt ith frame Frame associated with 0 th link – Inertial Frame Ai (qi ) – The homogeneous transformation of oi xi yi zi wrt oi−1 xi−1 yi−1 zi−1 Tij - Homogeneous transformation matrix of oj xj yj wrt oi xi yi zi Ai+1 Ai+2 . . . Aj−1 Aj if i < j i I if i = j Tj = if j > i (Tij )−1 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Conventions I 4 Parameters – 3 fixed, 1 variable I ai - Link length I αi - Link twist I di - Link offset I θi - Joint angle I Ai = Rz,αi Trz,ai Trx,di Rx,θi H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Transformation Ai H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Assumptions - DH1 and DH2 x1 perpendicular to z0 x1 intersects z0 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Parameters – Summary z0 - Axis of actuation of joint 1! Parameter Explanation a1 Distance along x1 d1 Distance along z0 from α1 Angle from z0 to z1 wrt x1 θ1 Angle from x0 to x1 wrt z0 H.I. Bozma between z0 and z1 o0 to inters. of x1 and z0 } Right-Hand Rule EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Transformation Matrix cos θi sin θi Ai = 0 0 − sin θi cos αi cos θi cos αi sin αi 0 sin θi sin αi − cos θi sin αi cos αi 0 H.I. Bozma ai cos θi ai sin θi di 1 EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Assigning Coordinate Frames I Choice zi – Axis of actuation for joint i + 1 I Other axes – Right hand rule (Satisfy DH Assumptions) I When joint i is actuated → link i and oi xi yi zi move I I Second frame - Set up so that DH Assumptions are satisfied (in regards to the succeeding frame) Base frame – Frame 0 I I I I Origin o0 - Any point on z0 Choose x0 , y0 so that o0 x0 y0 zo is right-handed Iterative process – Define Frame i wrt Frame i − 1, i = 1, . . . n − 1 Frame n – End effector or tool frame - on xn yn zn H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example: H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Parameters for a 2 DOF planar robotic system. Link i 1 2 ai a1 a2 H.I. Bozma αi 0 0 di 0 0 θi θ1 θ2 EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Iterative Process - Axes zi−1 and zi I zi−1 and zi – not coplanar I zi−1 and zi – parallel I zi−1 and zi – intersect H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics zi−1 and zi – not coplanar I I xi - ∃ unique line from zi−1 to zi , perpendicular to both oi - Where xi intersects zi H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics zi−1 and zi – parallel I oi - Anywhere along zi I xi - Arbitrary I I xi - Normal through oi−1 oi - Point of intersection of xi with zi H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics zi−1 and zi – intersect I oi - Intersection of zi−1 and zi I xi - Orthogonal to the plane defined by zi−1 and zi H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Frame Setup – Summary zi - Axis of actuation of joint i + 1! zi−1 and zi Case xi oi Non-coplanar Line from zi−1 xi intersects zi (oi−1 xi−1 yi−1 ) to zi Parallel Normal xi intersects zi (oi−1 xi−1 yi−1 ) through oi−1 Intersects Normal to plane zi−1 intersects (oi−1 xi−1 yi−1 ) of zi−1 and zi zi H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics DH Parameters – Summary zi - Axis of actuation of joint i + 1! Parameter Explanation ai Distance along xi from the intersection(xi ,zi−1 ) to oi di Distance along zi−1 from the intersection(xi ,zi−1 ) to oi−1 αi Angle from zi−1 to zi wrt xi θi Angle from xi−1 to xi wrt zi−1 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 1 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 2 – 3 DOF RRR H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 2 – 3 DOF RRR Links, Frames & Parameters H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 4 – 3 DOF RRP Scara Robot H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 4 – 3 DOF RRP Scara Robot H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 5 – 3 DOF PPP Cartesian Manipulator H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example – 3 DOF RPP Cartesian Manipulator H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 6 – 3 DOF RPP Cylindrical Manipulator H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example 6 – 3 DOF RPP Cylindrical Manipulator H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Comparative Workspaces H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics End Effector – Gripper Case H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Gripper Parameters I Origin on – Symmetrically between the fingers of the gripper I zn - Approach direction a I yn - Sliding direction s I xn - Normal direction n I Many manipulator systems → I I I zn−1 and zn coincide. on−1 and on - translated by dn amount Joint n - Rotation by θn around zn−1 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Inverse Kinematics Problem R d ∈ SE (3), find joint variables 0 1 c = [q1 , . . . , qn ]T ∈ C, such that Given H = Tn0 (q1 , . . . , qn ) = H where Tn0 (q1 , . . . , qn ) = A1 (q1 ) . . . An (qn ) H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics General Approach h11 h12 h13 h14 h21 h22 h23 h24 Noting that H = h31 h32 h33 h34 , h41 h42 h43 h44 where h41 = h42 = h43 = 0 and h44 = 1, → n unknowns in 12 nonlinear equations. I Closed-form solutions: Preferable (real-time, nonuniqueness), but not possible in general! I I I I Existence? Uniqueness? Difficult to derive even in case of existence! Numerical solutions: H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Nonuniqueness H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Efficient & Systematic Techniques 6 DOF with a gripper - exploit kinematic structure I Decouple the problem into simpler problems: I I Inverse position kinematics - Wrist position o ∝ q1 , q2 , q3 Inverse orientation kinematics -Wrist orientation R (Tool frame) Assume: Find a solution and then check for constraints on ranges of joints! H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example - PUMA Robot H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Kinematic Decoupling - 6 DOF with Gripper H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics 6 DOF with Gripper with Frames H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Spherical Wrist T63 = A4 A5 A6 cθ4 cθ5 cθ6 − sθ4 sθ6 −cθ4 cθ5 sθ6 − sθ4 cθ6 cθ4 sθ5 cθ4 sθ5 d6 sθ4 cθ5 cθ6 + cθ4 sθ6 −sθ4 cθ5 sθ6 + cθ4 cθ6 sθ4 sθ5 sθ4 sθ5 d6 = −sθ5 cθ6 sθ5 sθ6 cθ5 cθ5 d6 0 0 0 1 = Rz,θ4 Ry ,θ5 Rz,θ6 Euler Angles – Know how to solve for θ4 , θ5 and θ6 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example - 3DOF RRR H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Example – 3DOF RRR Projection onto x0 , y0 plane. H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Singularity - oc intersects z0 H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics RRR Robot with Shoulder Offset Either d2 = d or d3 = d. H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Left Arm – Right Arm H.I. Bozma EE 451 - Kinematics & Inverse Kinematics Outline Forward & Inverse kinematics Introduction Robotic Systems Kinematic Analysis Denavit-Hartenberg (DH) Convention Robot Topology Examples End Effector Inverse Kinematics Finding Link 2 & 3 Parameters H.I. Bozma EE 451 - Kinematics & Inverse Kinematics
© Copyright 2024