Metallipinnoitus – pinnoitusmenetelmien mahdollisuudet ainetta lisäävässä valmistuksessa J. Tuominen Tampereen teknillinen yliopisto Materiaaliopin laitos Laser Application Laboratory Sisältö • • • Yleistä pinnoitusmenetelmistä Laserpinnoitus – Jauhe – Lanka – Hybridimenetelmät – Kaupalliset laitteet & sovellukset – Materiaalit – Komponenttien ominaisuudet Päällehitsaus kaarimenetelmillä – CMT • Fusion bond • Low dilution (single layer) • Terminen ruiskutus – Kylmäruiskutus • Edut, rajoitukset • Yhteenveto Alihankinta 2015 18.9.2015 2 Classification of coating methods Energy from: • High intensity light kJ/m2: Moder • Combustion gases Low Alihankinta 2015 • Kinetic energy Low • Electric arc High 18.9.2015 3 Surface engineering § § § Composite solution Sustainable Material efficient Global cladding/overlay welding markets expected to rise from 3.8 to 7.6 billion USD by 2015* * Abakan Inc. Global thermal spraying markets were 7.1 billion Eur in 2011* * The Linde Group , cladding Global market for AM will reach 3.5 billion USD by 2015* * Wohlers report ”Let there be light”, Genesis 1:3 Alihankinta 2015 18.9.2015 4 Principle of laser cladding Feedstock material (coating material in the form of powder, wire or strip) is fed to the melt pool created by laser beam Thin layer of base material is melted, which provides fusion bond, low dilution, dense clad layer with excellent properties Several layers on top of each other -> 3D printing Alihankinta 2015 18.9.2015 5 Laser cladding methods Powder and carrier gas Powder and carrier gas Laser beam Laser beam Shielding gas Clad layer Shielding gas Clad layer Substrate 2-step: preplaced powder 1-step: off-axis hot-wire (tandem) 1-step: off-axis powder 1-step: coaxial cold-wire Alihankinta 2015 Substrate 1-step: coaxial powder 1-step: coaxial hot-wire 18.9.2015 6 Industrial laser cladding & applications 1-step: coaxial powder On-site cladding § Metallic and MMC coatings on metallic base materials § Main benefits: § Fusion bond § Low dilution § Low distortion § Industrial cladding with 3-6kW lasers & powder feedstock: § Low deposition rates (1-2 kg/h) § Low material efficiency (~70%) § New components / Remanufacturing (50/50) ID cladding Alihankinta 2015 18.9.2015 7 High power laser cladding § Inconel 625: 15 kW, 1 m/min, 15 kg/h (500 mm3/s) § New world record!!! Alihankinta 2015 18.9.2015 8 Induction assisted laser cladding Without induction With induction Stellite 12 on M238 mould steel (646 x 230 x 196 mm3) Fully closed-loop cladding process J. Tuominen, TUT Stellite 20 on AISI 1045 F. Brückner, Fraunhofer IWS Chromalloy Gas Turbine Corp, USA Alihankinta 2015 18.9.2015 9 Laser cladding cell Alihankinta 2015 18.9.2015 10 Process variables affecting the outcome Alihankinta 2015 18.9.2015 11 Kaupalliset laitteet (jauhe) HC-254 (Huffman) LENS 850-R (Optomec Inc.) EasyCLAD (BeAM) § § § § § § § § DMD 505 (DM3D Inc.) RPM’s 557 (RPM Innovations Inc) Alihankinta 2015 § § § 1 – 5 kW fiber, disc or diode laser 5-axis CNC machine Several powder hoppers Working volume 900 x 1500 x 900 mm3 Max component weight 200 – 300 kg Controlled atmosphere (O2≤10ppm, H2O<50ppm) Closed-loop process control Software to create tool path from 3D CAD data Powder is recycled Track width 0.5 – 5 mm Up to 50 mm3/s 18.9.2015 12 Yhdistelmäkoneet (AM + subtractive) DMG Mori: Lasertec 65 3D Optomec Lens + Fadal CNC mill Alihankinta 2015 18.9.2015 13 Yhdistelmäkoneet (AM + subtractive + laser microprocessing) Laser marking MAZAK INTEGREX i-400AM Alihankinta 2015 18.9.2015 14 Yhdistelmäkoneet (AM + subtractive + inspection with touch probe + laser microprocessing) Hybrid Manufacturing Technologies Alihankinta 2015 18.9.2015 15 Sovellusesimerkkejä Pituus 600 mm Airfoil (siipiprofiili) Inconel 625 NRC-CNRC Laskutelineen osa Ti6Al4V alloy AeroMet Corp. Alihankinta 2015 18.9.2015 16 Sovellusesimerkkejä Efesto DMG Mori Aihio Suorakerrostus Alihankinta 2015 Jälkityöstö 18.9.2015 17 Sovellusesimerkkejä Manufactured by DMD method Hip implant manufactured by LENS method Ti alloy Femoral component Manufactured by DMD method Alihankinta 2015 18.9.2015 18 Materiaalit • Hardfacing alloys (Stellites, Tribaloy, Norem, Nanosteel, Self-fluxing alloys, Nistelle, Nucalloy) • Superalloys (Inconel, Hastelloy, Monel, CMSX-4, high-Cr NiCr) • Tool steels (P20, M4, H13, CPM 10V) • Stainless steels (316L, 254SMO, 420, 17-4 PH, duplex) • Hadfield-steels (12-19%Mn, 1.1-1.4%C, 0-2.5%Cr ) • Titanium alloys (Ti-6Al-4V, Ti6242, Ti grade 2) • Copper alloys (CuAl, CuNi, CuSn) • Aluminium alloys (AlSi5 (4043), AlSi10Mg, AlSi12, AlSi7Mg) • Metal matrix composites (WC/W 2C-NiCrBSi, TiC-Stellite, VC-tool steel, SiC-Al, synthetic diamonds) • Solid lubricants (MoS2, WS2, CaF2, graphite) • Intermetallics (Cr13Ni5Si2, MoSi2, FeAl, NiTi) • Gradient layers (FGM) (metal matrix composites, monolithes) • Nanostructured and amorphous alloys, intelligent materials • High entropy alloys (development of new alloys) Alihankinta 2015 18.9.2015 19 IN-625 microstructure Lähde: IMTI National Research Council Canada Alihankinta 2015 18.9.2015 20 Mechanical properties (static) § Complex thermal history (directional heat extraction, repeated melting & rapid solidification, repeated solid state transformations) § Reduced grain size due to high solidification rates § Directionally solidified structures § Anisotropic mechanical properties Lähde: IMTI National Research Council Canada Lähde: IMTI National Research Council Canada Alihankinta 2015 18.9.2015 21 Mechanical properties (dynamic) Alihankinta 2015 18.9.2015 22 Corrosion resistance § High cooling rates reduce partitioning § Corrosion properties close to wrought alloys and better than cast structures Lähde: IMTI National Research Council Canada Alihankinta 2015 18.9.2015 23 Dimensional accuracy & surface finish Lähde: IMTI National Research Council Canada Alihankinta 2015 18.9.2015 24 Laser wire cladding & additive manufacturing University West, Trollhättan § Main benefits over powder: Material efficient (100%) § Clean § Possible to heat by resistive heating § Chemically cleaner feedstock § Less contamination during processing § Cheaper than powder § Tubular wires more challenging § Fraunhofer IPT, Aachen Alihankinta 2015 18.9.2015 25 Coaxial wire laser cladding & additive manufacturing Precitec Mitsubishi Cavipro Fraunhofer IWS HighYAG/IWS Alihankinta 2015 18.9.2015 26 Coaxial hot-wire laser cladding & additive manufacturing Duplex: 3.5kW, 4m/min, 250A, 7V, 5kg/h (150 mm3/s) § Main benefits: § § § § § Alihankinta 2015 High process stability Less parameters in wire alignment Omni-directional Increased productivity Material efficient 18.9.2015 27 Examples of laser wire manufactured parts Alihankinta 2015 18.9.2015 28 Laser + arc hybrid cladding & additive manufacturing Arc between two wires 1.4718 steel, 63 HRC Laser + MIG/MAG, single wire Twin wire 10kg/h 1.8401 steel, 38 HRC, 2 kg/h § Main benefits: § § § Mild steel § § 1.8401 steel § Alihankinta 2015 Low dilution Low heat input Increased productivity Low power capacity laser source (<500W) Stabilization & guidance of electrical arc by laser More stable process 18.9.2015 29 Kaupalliset laitteet (EB lanka) Sciaky Inc. § § § § Working space 5791 x 1219 x 1219 mm3 Deposition rate 3 – 9 kg/h Titanium, Tantalum, Inconel, Stainless steels Closed loop process control Alihankinta 2015 18.9.2015 30 Cold metal transfer (CMT) cladding & additive manufacturing § § § § § § § Advanced MIG High speed digital control Wire retracted at up to 140Hz Wire motion directly incorporated to electrical contol Max I = 280 A Solid wires up to Ø1.2mm Tubular wires up to Ø1.6mm § Main benefits: § Single wire, ~5kg/h Twin wire, ~10kg/h § § § § § § § § § § Alihankinta 2015 Low dilution Low heat input High productivity Material efficient Energy efficient (wall-plug, process) Power by aggregate On-site eligible ID cladding, Ø>100mm Low investments No optical elements Low safety precautions 18.9.2015 31 Cold metal transfer (CMT) cladding & additive manufacturing Alloy 625 Refuse incinerators and power stations Boiler walls and pipes (coal, waste, biofuel) (400-550°C) Turbine rotors (hydropower) Ship propellers Mould repair Alloy 625 Valves Alihankinta 2015 18.9.2015 32 Cold metal transfer (CMT) additive manufacturing α-Al primary dendrite (light) Al/Si eutectic (dark) 4.1 mm 50 HV0.05 11 µm Transverse cross-section of AlSi5 build-up Al Ra 3.0µm Si 40 mm3/s 150 layers Hypoeutectic AlSi5 (4043) by robotguided CMT process 15 µm Elemental maps of Al and Si Alihankinta 2015 18.9.2015 33 Sovellusesimerkkejä Cranfield University Steel/bronze Cranfield University Pelton runners for hydropower stations Cranfield University Stiffened panel / Aluminium Cranfield University Cranfield University Alihankinta 2015 18.9.2015 34 Suorakerrostus vs. jauhepeti Ominaisuudet Suorakerrostus Jauhepeti Materiaalit • laaja materiaalivalikoima • jauhe, lanka • rajoittunut (materiaalvalikoima kasvaa nopeasti) Kappaleiden koko • kappaleiden/suutinpään käsittelyjärjestelmä rajoittaa • prosessikammio rajoittaa Kappaleiden monimutkaisuus • rajoittunut • lähes rajoittamaton Tarkkuus ≥ 0.5 mm ≥ 0.1 mm Tuotto – 150 mm3/s – 20 mm3/s Alusta • 3D-pinta • aihio • tasainen pinta • tasainen aihio Pinnankarheus Rz 60 – 100 µm 10 – 50 µm Kerrosten paksuus ≥ 0.1 – 2 mm ≥ 0.015 – 0.1 mm Tukirakenteiden tarve Ei Kyllä (ulkonemat) Alihankinta 2015 18.9.2015 35 Terminen ruiskutus muodonantomenetelmänä Alihankinta 2015 18.9.2015 36 Additive manufacturing by cold spray Alihankinta 2015 18.9.2015 37 Ref. Peter Richter Jr, Advanced High Pressure Cold Spray Innovative Technology „Playground“, North American Cold Spray Conference, Canada, 2014 Alihankinta 2015 18.9.2015 38 Coaxially laser assisted cold spray COLA (http://www.cola-project.eu/, The European Union 7th Framework Programme ): new, cost-effective laser-assisted cold-spray technique, for high-quality deposition and repair Alihankinta 2015 18.9.2015 39 Yhteenveto • Metallien 3D-tulostukseen soveltuvia pinnoitusmenetelmiä ovat: – Laserpinnoitus – Päällehitsaukseen soveltuvat kaarihitsausmenetelmät (kylmäkaari) – Terminen ruiskutus (kylmäruiskutus) – Hybridimenetelmät (laserkuumalanka, laser+kaari, laser+ruisku, laser+induktio) • Jauhepetimenetelmään verrattuna: – Suurempi tuottavuus (isommat kappaleet) – Muodonanto jo olemassa olevaan kappaleeseen, korjaus – Mahdollisuus yhdistää ainetta lisäävä ja poistava valmistus (esi-, väli-, loppukoneistus) – Tukirakenteiden tarpeettomuus – Adaptiivinen prosessinsäätö – Alhaisempi resoluutio ja mittatarkkuus – Alhaisempi pinnanlaatu Alihankinta 2015 18.9.2015 40
© Copyright 2024