Name ——————————————————————— LESSON 4.1 Date ———————————— Practice C For use with the lesson “Graph Exponential Growth Functions” Graph the function. State the domain and range. 2. f(x) 5 4(2x) 1 1 1. f(x) 5 2x 2 1 2 3 y y 2 y 2 2 2 x 2 x 5 x11 5. f (x) 5 22 } 12 2 1 2 4. f(x) 5 7x 2 2 2 5 LESSON 4.1 3. f (x) 5 22(3x 1 3) 1 3 y 2 3 x22 3 6. f (x) 5 4 } 2 }2 2 1 2 y 2 y 2 2 x x 2 2 x 2 x whose graph has a y-intercept of 0 and an asymptote of y 5 3. 8. Visual Thinking Graph the following functions on the same coordinate plane: 3 x y 5 2x, y 5 3x, and y 5 1 }2 2 . Explain how the value of a in the equation y 5 a x affects the graph if a > 1. In Exercises 9–11, use the following information. Initial Deposit You want to have $10,000 in your account after five years. Find the amount your initial deposit should be for each of the following described situations. 9. The account pays 3.5% annual interest compounded monthly. 10. The account pays 2.75% annual interest compounded quarterly. 11. The account pays 4.25% annual interest compounded yearly. In Exercises 12–14, use the following information. Population From 1990 to 2000, the population of Florida increased by 23.5%. The population in 2000 was 15,982,378. 12. What was the average annual percent increase from 1990 to 2000? 13. Write a model giving the population P of Florida t years after 1990. 14. Estimate the population in 1999. 4-8 Algebra 2 Chapter Resource Book Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. 7. Generate Equation Write an exponential function of the form y 5 ab x 2 h 1 k Answers for Chapter 4 Lesson 4.1 Graph Exponential Growth Functions Exponential and Logarithmic Functions 7. ; domain: all real numbers; range: y > 23 y 2 Teaching Guide x 2 1 2 3 4 5 x21 1. 8; 16; 32 2. 2 , 2 , 2 , 2 , 2 , 2 , 2 where 18 x is the number of the square 3. 9.22 310 ; no 8. Practice Level A 1. B 2. A 3. D 4. F 5. C 6. E 7. 8. y ; domain: all real numbers; range: y < 2 y 2 y ANSWERS 0 x 2 4 2 2 x 2 x 9. ; domain: all real numbers; range: y > 22 y 2 9. 10. y y x 2 4 2 2 x 2 x 10. $3587.50 11. $3588.32 12. $3588.51 13. 29,816,591 14. 1.0128; 1.28% 11. 12. y 15. 32,592,962 y Practice Level C 4 2 2 x 1. 2 ; domain: all real numbers; range: y > 23 y x Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. 2 4 x 13. $5150.00 14. $5151.70 15. $5152.08 Practice Level B 2. 1. C 2. A 3. B 4. ; domain: all real numbers; range: y > 0 y 1 1 2 2 4 2 ; domain: all real numbers; range: y < 0 y 2 2 x x 4. 6. ; domain: all real numbers; range: y < 3 y 2 ; domain: all real numbers; range: y > 1 y 2 x x 3. 5. ; domain: all real numbers; range: y > 1 y ; domain: all real numbers; range: y > 25 y 2 2 x x Algebra 2 Chapter Resource Book A47 ; domain: all real numbers; range: y < 2 y 2 2 ; domain: all real numbers; y 3 range: y > 2}2 2 2 2. p 5 2200(1.03)t M 270 260 250 240 230 220 210 200 190 180 0 x 8. All three have a y-intercept of 1. The larger a is the steeper the graph. 9. $8396.71 10. $8719.45 11. $8121.19 12. 2.13% 13. y 5 12,941,197(1.0213)t 14. 15,644,239 Study Guide 1. 1 ; domain: all real numbers, range: y > 0 1 1 x ; domain: all real numbers, range: y > 21 y 1 1 x 4. $2171.38 A48 Challenge Practice 1 1. y 5 64 + 8x 2. y 5 3 + 4x 3. y 5 } + 5x 2 4. y 5 3 + 3x 5. a. (0, 1) y g(x) 5 4 x f(x) 5 3 x 0.5 x 6. a. $5466.09 b. $5466.35 c. $5466.36 d. $5466.38 x y 3. 3231 people: 1998 b. 4x < 3x for x < 0 c. 4x > 3x for x > 0 1 2. 0 2 4 6 8 10 12 14 t Years since 1990 0 1 2 3 4 5 6 t Years since 1999 1.5 ; domain: all real numbers, range: y > 0 y 2800 2600 2400 2200 2000 0 $218 billion; 2003 7. Sample answer: y 5 23x 1 1 1 3 p 3400 3200 3000 Algebra 2 Chapter Resource Book Increasing the number of compoundings per year does not result in unlimited growth of the amount in the account. There is a limiting value of about $5466.38 for the amount in the account. 7. a. about 4.07% b. 4.06% c. about 4.33% d. 4.32% e. The savings plan in part (c) has the greatest effective yield. f. The savings plan in part (c) will have the greatest balance after 5 years because it has the greatest effective yield. g. For an account with an initial deposit of $1000, the effective yield for the account will be greater for larger interest rates and more frequent compoundings. Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. 6. x 1. M 5 190.4(1.07)t Number of people ANSWERS 5. Problem Solving Workshop: Worked Out Example Federal budget outlays for Medicare (billions of dollars) Lesson 4.1 Graph Exponential Growth Functions, continued
© Copyright 2025