Name ________________________________________ Date __________________ Class__________________ LESSON 6-3 Practice C Solving Systems by Elimination Solve each system by elimination. ⎧x + y = 2 1. ⎨ ⎩2x − y = 7 ________________________ ⎧−3x − 4y = −2 4. ⎨ ⎩6x + 4y = 3 ________________________ ⎧ x + 6y = 1 7. ⎨ ⎩2x − 3y = 32 ________________________ ⎧5x − 2y = −48 10. ⎨ ⎩2x + 3y = −23 ________________________ ⎧3x − 2y = −2 2. ⎨ ⎩3x + y = 10 ⎧ x + y = −7 3. ⎨ ⎩x − y = 5 _________________________ ________________________ ⎧2x − 2y = 14 5. ⎨ ⎩ x + 4y = −13 ⎧ 6. ⎨ y − x = 17 ⎩2y + 3x = −11 _________________________ ________________________ ⎧ 1 ⎪⎪− x + y = 4 8. ⎨ 2 ⎪ 1 x − y = −3 ⎪⎩ 3 ⎧3x + y = −15 9. ⎨ ⎩2x − 3y = 23 _________________________ ________________________ ⎧4x − 3y = −9 11. ⎨ ⎩5x − y = 8 ⎧3x − 3y = −1 12. ⎨ ⎩12x − 2y = 16 _________________________ ________________________ 13. At a bakery, Riley bought 3 bagels and 2 muffins for $7.25. Karen bought 5 bagels and 4 muffins for $13.25. What is ____________________________________ the cost of each item? 14. A chemist has a beaker of a 3% acid solution and a beaker of a 7% acid solution. He needs to make 75 mL of a 4% acid solution. a. Complete the table. Amount of Solution (mL) Amount of Acid (mL) 3% solution + 7% solution = 4% solution x + y = ________ + _____ y = 0.04(75) _____ x b. Use the information in the table to write a system of linear equations. _____________________________________ c. Solve the system of equations to find how much he will use from each beaker. _________________________________________________________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 6-21 Holt McDougal Algebra 1 Review for Mastery LESSON 6–3 Practice A 1. 0y; 3x; 3; 3; 2; 2; 2; 2; 2; 12; 4; 2; 4 2. 2y; −7; 0y; −3; −3; −1; −1; 3; 3; 3; 9; 9; 9; −2; 2; 2; −1; 3; −1 5. (6, −2) 6. (−8, −1) 7. 3 and −4 2. (4, −1) 3. (−6, 18) 4. (−4, −14) 5. (7, 10) 6. (7, −18) 7. (5, −2) 3. 2; 4; −16; 5; 10; 5; 10; 5; 5; 2; 2; 2; 2; 2; −10; −2; −2; 5; 2; 5 4. (3, 4) 1. (3, −14) Challenge ⎧5 x + 4 y + z = 865 1. ⎨ ⎩9 x + 6 y + 6z = 1410 2. 5x − 2y = 20 3. −21x − 18y = −3780 Practice B 1. −4y = 24; −6; −2; −2; −6 4. x = 60 2. −6; 2; −34; −2x = −14; 7; −4; 7; −4 ⎧2y + z = 285 5. ⎨ ⎩4 y + z = 565 3. (2, −3) 4. (−9, 1) 5. (4, −6) ⎛ 1 ⎞ 6. ⎜ − , 3 ⎟ ⎝ 2 ⎠ 7. (−4, −1) ⎛ 1 ⎞ 8. ⎜ − , −2 ⎟ ⎝ 5 ⎠ 6. y = 140, z = 5 7. sleeping bags: $60; tents: $140; bug repellant: $5 Problem Solving 9. $22 1. chicken leg 8 oz., 10. 7 Gala apples; 12 Granny Smith apples chicken wing 3 oz. 2. bath towel $10, Practice C hand towel $5 1. (3, −1) 2. (2, 4) 3. (−1, −6) ⎛ 1 1⎞ 4. ⎜ , ⎟ ⎝3 4⎠ 3. adult ticket $8, 5. (3, −4) 6. (−9, 8) 4. office visit $25, 7. (13, −2) 8. (−6, 1) 9. (−2, −9) 10. (−10, −1) 11. (3, 7) child ticket $5 allergy shot $8 5. A ⎛5 ⎞ 12. ⎜ , 2 ⎟ ⎝3 ⎠ 6. G Reading Strategies 1. Multiply the first equation by 3 and the second equation by 5 to get common coefficients of −15. 13. bagel: $1.25; muffin: $1.75 14. 75; 0.03; 0.07 ⎧4(9 x − 10 y = 7) ⎧36 x − 40 y = 28 ⇒⎨ 2. ⎨ ⎩5(5 x + 8 y = 31) ⎩25 x + 40 y = 155 ⎧ x + y = 75 ⎨ ⎩0.03 x + 0.07 y = 3 3. (1, −3) 56.25 mL of the 3% solution; 18.75 mL of the 7% solution 4. (10, −10) Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A72 Holt McDougal Algebra 1
© Copyright 2024