MA3110S Mathematical Analysis II (Version S) AY 2010/2011 Sem 2

MA3110S
Mathematical Analysis II (Version S)
AY 2010/2011 Sem 2
NATIONAL UNIVERSITY OF SINGAPORE
MATHEMATICS SOCIETY
PAST YEAR PAPER SOLUTIONS
solutions prepared by Joseph Andreas and Chang Hai Bin
MA3110S
Mathematical Analysis II (Version S)
AY 2010/2011 Sem 2
Question 1
Note that for any open set I containing a, consider γ : I → R3 satisfying γ(x) = a for any x ∈ I.
Then, f (γ(t)) = f (a) = 0 = g(a) = g(γ(t)) as required.
Now, since f (γ(t)) = g(γ(t)) = 0, we have D(f ◦ γ)(t) = D(g ◦ γ)(t) = 0 for all t ∈ I. By chain
rule, we have
 
u
0 = D(f ◦ γ)(t0 ) = Df (γ(t0 ))D(γ(t0 )) = Df (a)D(γ(t0 )) = 0 1 −3 v 
1
and
 
u
0 = D(g ◦ γ)(t0 ) = Dg(γ(t0 ))D(γ(t0 )) = Dg(a)D(γ(t0 )) = 1 −2 6 v 
1
Solving two equations, we have u = 0 and v = 3.
Question 2
We shall use two lemmas :
Lemma 1 : T : Rn → Rm is a linear transformation, and h ∈ Rn , then |T h| ≤ |T ||h|.
Lemma 2: If a, b ∈ Rn , then ||a| − |b|| ≤ |a − b|
Letting X = T x, H = T h, we have :
T
x
·
T
h
|T (x + h)|(x + h) − |T x|x −
x − |T x|h
|T x|
|h|
T
x
·
T
h
|T x + T h|x − |T x|x −
x + (|T x + T h| − |T x|) h
|T x|
=
|h|
T
x
·
T
h
|T x + T h|x − |T x|x −
x
| |T x + T h| − |T x| | · |h|
|T x|
≤
+
|h|
|h|
T
x
·
T
h
|T x + T h| − |T x| −
|x|
|T x| =
|T | + | |T x + T h| − |T x| |
|T | |h|
T
x
·
T
h
|T x + T h| − |T x| −
|T x| ≤
|T ||x| + | T x + T h − T x |
|T h|
NUS Math LaTeXify Proj Team
Page: 1 of 3
NUS Mathematics Society
MA3110S
Mathematical Analysis II (Version S)
AY 2010/2011 Sem 2
|X + H| − |X| − X · H |X| =
|T ||x| + |T h|
|H|
Note that:
|X + H| − |X| − X · H |X| |H|
|X + H|2 − |X|2 X · H |X + H| + |X| − |X| =
|H|
|X + H|2 |X| − |X|3 − (X · H)(|X + H| + |X|) =
|H| · |X| · (|X + H| + |X|)
|X|2 + |H|2 + 2X · H |X| − |X|3 − (X · H)(|X + H| + |X|) =
|H| · |X| · (|X + H| + |X|)
|H|2 |X| + (X · H)|X| − (X · H)|X + H| =
|H| · |X| · (|X + H| + |X|)
≤
1
|H|2 |X| | (X · H)|X| − (X · H)|X + H| |
+
|H|
|H|
|X| · (|X + H| + |X|)
|X · H| · | |X| − |X + H| |
1
= |H||X| +
|H|
|X| · (|X + H| + |X|)
|X · H| · | X − (X + H) |
1
≤ |H||X| +
|H|
|X| · (|X + H| + |X|)
|X · H| · | − 1||H|
1
= |H||X| +
|H|
|X| · (|X + H| + |X|)
= (|H||X| + |X · H|)
1
|X| · (|X + H| + |X|)
So,
|T (x + h)|(x + h) − |T x|x − T x · T h x − |T x|h
|T x|
0≤
|h|
|X + H| − |X| − X · H |X| ≤
|T ||x| + |T h|
|H|
NUS Math LaTeXify Proj Team
Page: 2 of 3
NUS Mathematics Society
MA3110S
Mathematical Analysis II (Version S)
≤ (|H||X| + |X · H|)
AY 2010/2011 Sem 2
1
|T ||x| + |T h|
|X| · (|X + H| + |X|)
|T ||x|
+ |T h| − − − (1)
|T x| · (|T x + T h| + |T x|)
and the whole expression (1) goes to zero as |h| → 0
= (|T h||T x| + |T x · T h|)
Question 3
Since f is continuous, so is |f |. By extreme value theorem, there exists α such that |f (x)| ≥ |f (α)|
for all x ∈ R. Since |f (x)| > 0 for all x, it follows that |f (α)| > 0. Setting M = |f (α)|, we have
f (x) ≥ M for all x ∈ Rn .
Now, consider any > 0. Since (fk ) converges uniformly to f , then there exists N1 , N2 ∈ N such
M 2
n
n
that |fk (x) − f (x)| < M
2 for all k ≥ N1 , x ∈ R , and |fk (x) − f (x)| < 2 for all k ≥ N2 , x ∈ R .
M
M
Now, if k ≥ N1 , we have |f (x) − fk (x)| < 2 , thus leaving us with |fk (x)| − |f (x)| > − 2 . Thus,
|fk (x)| > M
2 .
1
k (x)
Finally, consider any k ≥ max(N1 , N2 ) we have | fk1(x) − f (x)
| = | ff(x)−f
|=
k (x)f (x)
|f (x)−fk (x)|
|fk (x)||f (x)|
<
M2
2
M2
2
=
Question 4
Rb
Since the set of discontinuity of cos(nx) is a f -null set it follows that a cos nxdf . By integration
Rb
Rb
Rb
by parts, we have a f d(cos nx) and hence, a f sin(nx)dx exists. We have, -n a f sin(nx)dx =
Rb
Rb
if and only if a cos nxdf is bounded (that happens by integration
a f d cos(nx) which is bounded
Rb
Rb
by parts). But, f (a) − f (b) ≤ a cos(nx)df ≤ f (b) − f (a) since −1 ≤ cos x ≤ 1. Thus, a cos(nx)df
Rb
is bounded. Hence, n a f sin(nx)dx is bounded. The result follows. QED
Question 5
By Taylor’s theorem, we have
f (x) =
j−1 (k)
X
f (0)
k!
k=0
xk +
f (j) (a) j
x
j!
for some a ∈ [0, x] which leads to
f (x) − Pj (x)
1
xj− 2
=
f (j) (a)xj
j!
−
f (j) (0)xj
j!
1
xj− 2
and hence, we have
f (x) − Pj (x)
1
xj− 2
=
√
x
f (j) (a) − f (j) (0)
j!
!
=
Z x
1 1
√ xf (j) (a) − xf (j) (0) = √
f j (a) − f j (0)dt
j! x
j! x 0
Rx
Next, clearly 0 f (j) (t) − f (j) (0)dt exists, and hence,
Z
Z x
Z x
−1 x (j)
1
1
lim √
|f (t)−f (j) (0)|dt ≤ lim √
f (j) (t)−f (j) (0)dt ≤ lim √
|f (j) (t)−f (j) (0)|dt
x→0+
x→0+
x→0+
x 0
x 0
x 0
NUS Math LaTeXify Proj Team
Page: 3 of 3
NUS Mathematics Society
MA3110S
Mathematical Analysis II (Version S)
Thus,
1
lim √
x→0+
x
x
Z
f (j) (t) − f (j) (0)dt = 0
0
which implies
lim
x→0+
x
Z
1
√
j! x
f (j) (t) − f (j) (0)dt = 0
x
Z
(1)
0
Now, since for any function g and interval [p, q],
1
lim √
x→0+ j! x
AY 2010/2011 Sem 2
Rq
gdt = g(c)(q − p) for some c ∈ [p, q], we have
p
1
√ (f (j) (a)x − f (j) (b)x)
x→0+ j! x
f (j) (a) − f (j) (t)dt = lim
0
for some b ∈ [0, x]. Thus,
1
lim √
x→0+ j! x
Z
x
1√
x(f (j) (a) − f (j) (b))
x→0+ j!
f (j) (a) − f (j) (t)dt = lim
0
As f (j) is a continuous function and since a, b both in interval [0, x], we have f (j) (b) − f (j) (a) goes
√
to 0 as x → 0+. Since x also goes to 0 when x goes to 0, we have
Z x
1
f (j) (a) − f (j) (t)dt = 0
(2)
lim √
x→0+ j! x 0
Adding (1) and (2), we get
1
lim √
x→0+ j! x
x
Z
f (j) (a) − f (j) (0)dt = 0
0
Thus, we get
lim
x→0+
f (x) − Pj (x)
1
xj− 2
=0
as desired.
NUS Math LaTeXify Proj Team
Page: 4 of 3
NUS Mathematics Society