MA1102R Calculus AY 2008/2009 Sem 2 NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY PAST YEAR PAPER SOLUTIONS with credits to Sean Lim Wei Xinq, Terry Lau Shue Chien MA1102R Calculus AY 2008/2009 Sem 2 Question 1 (a) Check that lim x→∞ x2 + 2x + 3 sin 4x + 5 6 7x = lim y→0 1 + 2y + 3y 2 sin 4y + 5y 2 6y 7 Then by L’Hopital’s rule, we have (2 + 6y) sin lim 6y 7 + 76 cos 6y 7 (1 + 2y + 3y 2 ) = 4 + 10y y→0 6/7 3 = 4 14 (b) Applying L’Hopital’s rule twice, we have lim x→0 (c) Let f (x) := 1 1 1 2 x +3 x +4 x 3 1 1 − x x e −1 ex − x − 1 x→0 x(ex − 1) ex − 1 = lim x x→0 xe + ex − 1 ex = lim x x→0 xe + 2ex 1 1 = lim = x→0 x + 2 2 = lim x and consider 1 1 1 2x + 3x + 4x lim ln f (x) = lim x ln x→∞ x→∞ 3 1 1 1 ln 2 x +33x +4 x = lim 1 x→∞ ! x Then, by L’Hopital’s rule we have 3 lim 1 1 1 2 x +3 x +4 x · 1 3 1 1 1 2 x ln 2 · − x12 + 3 x ln 3 · − x12 + 4 x ln 4 · − x12 x→∞ NUS Math LaTeXify Proj Team − x12 1 = lim x→∞ 1 1 2 x ln 2 + 3 x ln 3 + 4 x ln 4 1 1 1 2x + 3x + 4x ln 2 + ln 3 + ln 4 ln 24 = = 3 3 Page: 1 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 Then, ln 24 3 lim f (n) = lim f (x) = exp n→∞ x→∞ = 241/3 = 2(3)1/3 Question 2 dx x (a) Let u = ln x. Then du = ⇒ eu du = dx. Then we have Z 1 3 1 Z u ue4u du x (u)(e du) = 0 0 Using Integration by Parts gives us 1 4 (b) Let u = √ x. Then du = dx √ 2 x 1 Z Z 1 1 4u 4u 1 e du u d(e ) = (ue )|0 − 4 0 1 4 1 4u 1 = e − (e )|0 4 4 4 3e + 1 = 16 4u 0 ⇒ 2udu = dx. Then we have 1 Z −1 tan √ ( x) dx = Z 1 2u tan−1 u du 0 0 Using Integration by Parts gives us 1 Z −1 2u tan 0 Z 1 tan−1 u d(u2 ) 0 Z 1 u2 2 −1 1 = (u tan u)|0 − du 2 0 1+u Z 1 π u2 = − du 2 4 0 1+u u du = Here, let u = tan v. Then du = sec2 vdv. Hence we have π − 4 Z 0 1 u2 π du = − 1 + u2 4 Z π − 4 Z π 4 π 4 π 4 π 2 Z = = = = = NUS Math LaTeXify Proj Team π 4 0 π 4 tan2 v (sec2 vdv) sec2 v tan2 v dv 0 − π 4 (sec2 v − 1) dv 0 π − (tan v − v)|04 π π − tan( ) + 4 4 −1 Page: 2 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 (c) We have Z 4 1 x2 + 4x + 4 dx = x2 (x2 + 4) 4 (x + 2)2 dx 2 2 1 x (x + 4) Z 4 2 2 1 dx = 1+ x x2 + 4 1 Z Now let x = 2 tan u. Then dx = 2 sec2 udu. This gives us Z 1 4 2 1+ x 2 1 dx = 2 x +4 Z tan−1 2 tan−1 12 tan−1 1 2 Z 1 2 Z 1 = 2 Z = = 1 1+ tan u 2 1 (2 sec2 udu) 4 sec2 udu 2 (1 + cot u)2 du tan−1 12 tan−1 2 (1 + 2 cot u + cot2 u) du tan−1 12 tan−1 2 (csc2 u + 2 cot u) du tan−1 12 1 −1 2 = (− cot u + 2 ln | sin u|)|tan −1 1 tan 2 2 1 1 1 −1 = (− + 2 + 2(ln | sin(tan 2)| − ln | sin(tan−1 )|)) 2 2 2 3 1 = + ln | sin(tan−1 2)| − ln | sin(tan−1 )| 4 2 3 2 1 = + ln √ − ln √ 4 5 5 3 = + ln 2 4 Question 3 (a) Consider f (x) := 1 (x2 +1)1/x = 1 x2 +1 1 x . Then ln ln lim f (x) = lim x→∞ x→∞ = lim 1 x2 +1 x (x2 + 1) · − (x22x +1)2 1 2x = lim − 2 =0 x→∞ x + 1 x→∞ by L’Hopital’s Rule. Then we have NUS Math LaTeXify Proj Team Page: 3 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 lim f (n) = lim f (x) = e0 = 1 n→∞ x→∞ Hence, we have lim (−1)n f (n) 6= 0 n→∞ which shows that the series diverges by the Divergence Test. (b) Using the Limit Comparison Test and comparing it with √ lim n→∞ √ n+1− n−1 n 1 n3/2 = lim n→∞ 1 , n3/2 we have √ √ √ n( n + 1 − n − 1) √ √ √ √ n+1+ n−1 √ = lim n ( n + 1 − n − 1) · √ n→∞ n+1+ n−1 √ n + 1 − (n − 1) √ = lim n √ n→∞ n+1+ n−1 √ 2 n √ = lim √ n→∞ n+1+ n−1 2 2 q = lim q =1 = n→∞ 1+1 1+ 1 + 1− 1 √ n n Then we have ∞ X 1 3/2 n n=1 converges if and only if ∞ X n=1 (c) Note that p (2k − 1)(2k + 1) = √ n+1− n √ n−1 converges p √ 4k 2 − 1 < 4k 2 = 2k Observe that p √ √ 3 · ( 3 · 5) · · · ( (2n − 3)(2n − 1)) · 2n − 1 4 · 6 · 8 · · · (2n + 2) √ √ 3 · 4 · 6 · · · · · (2n − 2) · 2n − 1 < 4 · 6 · 8 · · · (2n + 2) √ √ 3 · 4 · 6 · · · · · (2n − 2) · 2n < 4 · 6 · 8 · · · (2n + 2) √ 3 =√ 2n(2n + 2) √ 3 <√ 2n2n r 3 1 = 8 n 32 1 · 3 · 5 · · · (2n − 1) = 4 · 6 · 8 · · · (2n + 2) NUS Math LaTeXify Proj Team √ Page: 4 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 This is dominated by the p-series where p = 32 , which converges. Therefore ∞ X 1 · 3 · 5 · · · (2n − 1) n=1 4 · 6 · 8 · · · (2n + 2) converges. Question 4 First, we want to find the point of intersection of the two curves. √ 1 1 x = x − 1 ⇒ x2 − x + 1 = 0 ⇒ x = 2 2 4 So the region of integration will be [0,2]. By observations and visualization of the rotation of the shaded area through the given diagram, the total surface area of solid generated is in fact√the surface of the cone,S1 generated by y = 21 x and surface of the parabola,S2 generated by y = x − 1. Using the formula Z b p A(S) = 2π f (x) 1 + [f 0 (x)]2 dx a we evaluate A(S1 ) and A(S2 ). Z 2 r 1 A(S1 ) = 2π 1 + dx 4 √ 0Z 2 5 = π x dx 2 0 √ 2 2 5 x = π 2 2 0 √ = 5π NUS Math LaTeXify Proj Team 1 x 2 Page: 5 of 9 NUS Mathematics Society MA1102R Calculus 2√ Z A(S2 ) = 2π AY 2008/2009 Sem 2 s x−1 1+ 1 Z 2 1 dx 4(x − 1) r 1 x − 1 + dx 4 1 Z 2r 3 x − dx = 2π 4 1 " 3 #2 3 2 2 x− = 2π 3 4 ! 1 √ 4 5 5−1 = π 3 8 √ 5 5−1 = π 6 = 2π Therefore √ √ 6 5+3 3+1 A(S) = A(S1 ) + A(S2 ) = π 6 Question 5 (a) We have x+y =1⇒y =1−x Hence, substituting this into the equation of the curve gives us 1 − x = px2 + qx px2 + (q + 1)x − 1 = 0 Since the line is tangent to the curve, the discriminant is 0, i.e. (q + 1)2 − 4(p)(−1) = 0 4p + (q + 1)2 = 0 (b) The curve cuts the x-axis at 0 and − pq , and so the area, A(p, q) is given by − pq Z A(p, q) = (px2 + qx) dx 0 = px3 qx2 + 3 2 − q p 0 q3 = 2 6p NUS Math LaTeXify Proj Team Page: 6 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 2 Now p = − (q+1) 4 , and so A(q) = q3 = 2 2 6 − (q+1) 4 8q 3 3(q + 1)4 Then we have 3(q + 1)4 (24q 2 ) − 8q 3 (12(q + 1)3 )) 9(q + 1)8 24q 2 (3(q + 1) − 4q) = 9(q + 1)5 2 8q (3(q + 1) − 4q) = 3(q + 1)5 8q 2 (3 − q) = 3(q + 1)5 A0 (q) = Now if A0 (q) = 0, we have q = 0 or q = 3, but q > 0 is given. Then, check that A0 (q) > 0 if q < 3 and A0 (q) < 0 if q > 3. So q = 3 is a maximum point. Then, we have p = −4. Question 6 (a) First, note that we can f is one to one is important for us so that g = f −1 is in fact well-defined. We might want to simplify the second part of the integration. Let x = f (y), and thus we have dx 0 dy = f (y). Note that also x = d ⇒ y = b and x = c ⇒ y = a. Therefore we have Z d Z d g(x) dx = c g(g −1 (y)) dx c Z b = y a Z b = dx dy dy yf 0 (y) dy a We perform by parts on the first part, then we can evaluate the given integral Z b Z d f (x) dx + a [xf (x)]ba g(x) dx c Z b Z b xf (x) dx + yf 0 (y) dy a a Z b Z b 0 = bf (b) − af (a) − xf (x) dx + xf 0 (x) dx = − 0 a a = bd − ac (b) Observe that ∞ X n=0 NUS Math LaTeXify Proj Team xn = 1 1−x Page: 7 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 for 0 < x < 1. Differentiating both sides gives us ∞ X nxn−1 = n=0 1 (1 − x)2 (1) Differentiating it again and rearranging the terms (which is possible because the series is convergent) yields ∞ X n(n − 1)xn−2 = 2 (1 − x)3 (n2 xn−2 − nxn−2 ) = 2 (1 − x)3 n=0 ∞ X n=0 By letting x = 1/3, we have 2 ∞ X n n 27 9 − = 3n 3n 4 n=0 ∞ 2 X n 3 n − n = n 3 3 4 n=0 By (1), we have n−1 ∞ X 1 1 n = 3 (1 − 1/3)2 n=0 ∞ X n 3 = n 3 4 n=0 So we have ∞ X n2 n=0 3n = 3 3 3 + = 4 4 2 Question 7 (a) By Mean Value Theorem for [a, a + δ] for a δ > 0, there exists c ∈ (a, a + δ) such that f 0 (c) = f (a + δ) − f (a) δ Taking limits on both sides gives us NUS Math LaTeXify Proj Team Page: 8 of 9 NUS Mathematics Society MA1102R Calculus AY 2008/2009 Sem 2 f (a + δ) − f (a) δ→0 δ lim f 0 (c) = lim δ→0 Now δ → 0 implies c → a+ , and so we have lim f 0 (x) = f 0 (a) x→a+ Similarly, by Mean Value Theorem for [a − δ, a] for a δ > 0, there exists c ∈ (a − δ, a) such that f 0 (c) = f (a) − f (a − δ) δ Taking limits on both sides gives us f (a) − f (a − δ) δ→0 δ lim f 0 (c) = lim δ→0 Now δ → 0 implies c → a− , and so we have lim f 0 (x) = f 0 (a) x→a− Then note that lim f 0 (x) = lim f 0 (x) = L = f 0 (a) x→a− x→a+ and this completes the proof. (b) By the Extreme Value Theorem, there exists c1 , c2 ∈ [a, b] such that c1 is the global min and c2 is the global max, i.e. f (c1 ) ≤ f (x) ≤ f (c2 ) for all x ∈ [a, b]. Since f is non-constant, we have f (c1 ) 6= f (c2 ). Now let c = f (c1 ) and d = f (c2 ). Then the range of f is the closed interval [c, d], as desired. NUS Math LaTeXify Proj Team Page: 9 of 9 NUS Mathematics Society
© Copyright 2024