Facitliste Ver. 1.27 Matematikopgaver – 10. kl 1. Algebra og regneregler 1.1 a. Vær opmærksom på de negative tal 2 b. 10 c. -29 d. -11 e. 7 f. -25 g. 0 h. 21 1.2 Lav brøkerne om til rene brøker (f.eks: 3 ¾ = 15/4) a. 11 b. 29 c. 23 d. 51 e. 78 1.3 a. /2 /8 /9 /29 /7 Husk at lave brøkerne om til rene brøker, før du regner 3 14/15 b. 16 c. 2 1/7 d. 2 14/15 e. ½ f. 23 /21 /60 g. 1 1/4 h. -1 1/3 i. 4 4/5 j. 11 1/4 k. 5 1/30 Algebra og regneregler 1.1 - 1.3 1 Facitliste Ver. 1.27 l. 13 /14 m. 4 3/4 n. 2 2/5 o. 3 17/21 p. 4 7/20 q. 1 3/5 r. 4 1.4 a. Regnerækkefølge 108 b. 13 c. 18 d. 1,5 e. 6 f. 10 g. 5 h. 364 i. 166 j. 21 k. 625 l. 1.5 8 Gang parenteserne ud: a. 40 – 15x b. -12 + 30a c. 6x - 8 d. 28a + 12b e. – 12x - 8 f. – 30x + 18 g. 4- 6z h. - 24a + 32 a2 i. 12a - 48 j. 16x2 – 10xy k. 4x + 5x2 Algebra og regneregler 1.4 - 1.5 2 Facitliste Ver. 1.27 1.6 a. Reducer. -9b b. -3x – 28 + 8a c. -7y – 1 d. -4a2 + 4 e. -60a + x2 f. 48 g. 2x + 6 1.7 a. Gang parenteser sammen og reducer. -16x2 + 26x + 12 b. -96x2 + 67x – 2 c. -x2 + 22x + 48 d. 256 – x2 e. 2x2 + 13x – 24 f. -18a2 + 102a + 36 g. 12x – 36 – 4xy + 12y h. -4x2 + 16x + 24 i. -2x2 + 5x + 3 j. x2 – 3x + 2 k. 12x2 - 68x + 40 l. 3x2 + 7x - 6 m. -7ab + 2b2 n. -2x2 – 6y o. -3ab + 3b2 p. 2zy – 4z2 q. 12x5 + 6x4 – 36x3 1.8 a. Kvadratsætningerne x2 + 1 + 2x b. 25 + x2 + 10x c. a2 + 16b2 + 8ab d. x2 + 4 – 4x e. 4a2 + 9b2 – 12ab Algebra og regneregler 1.6 - 1.8 3 Facitliste Ver. 1.27 f. a2 – 25 g. 49c2 – 4a2 h. 2 (a2 + b2 + 2ab) = 2a2 + 2b2 + 4ab i. -1 (a2 + b2 – 2ab) = -a2 – b2 + 2ab j. 2 (1 – 4x2) = 2 – 8x2 1.9 a. Find kvadratsætningen (x + 4)2 b. (3a + b)(3a – b) c. (2x – 3y)2 d. (4 - ½x)2 e. (1 – y)2 f. (6x + 4y)2 g. (8a + 9b)(8a – 9b) h. (3q + 2r)2 i. 2 (x – 5)2 j. ( + √2)( − √2) 1.10 Gang parenteser sammen og reducer. a. x2 + 6x + 9 b. x2 - 2x + 1 c. 4x2 + 25y2 + 20xy d. x2 – 8x + 16 e. x2 + 6x + 9 f. 4x2 – 3 – 4x g. 7x + 2y – 6 – 2x2 – xy h. 2x2 + 6x + 4 i. 5xy+yx2+2x2+10x+6y+12 j. (x + 3)(2 - x)(3x + 5) = 1.11 Find fælles elementer i ledene og sæt udenfor parentes. a. 2a (1 + 2b) b. 3 (x – 2) c. x (3 + y) d. 3 (4a + 7ab – 4b) Algebra og regneregler 1.9 - 1.11 4 Facitliste Ver. 1.27 e. 5 (x2 + 2x – 5) f. 2x (x – 3 + 6y) g. (a + 3) (5 – b) h. 4 (a + 2ab + 5b2) i. x (4x – 5 + 6y) j. (3a + 1) ((a – 1) + 2) = (3a + 1) (a + 1) k. (2 – a) (5 + 2) = (2 – a) 7 l. 5 ((x + 1) + 2 (½x - ½)) = 5 * 2x = 10x m. 2xy (x + 1 – 3y) n. ((b+3)+(b-3)) (a-2) = 2b (a-2) o. 1½ab2 (2a + 1) p. (3 – c) (7 + 3) = 10 (3 – c) 1.12 Sæt udenfor parentes. a. 2x2 - x - 6 = (x + 2) * (2x - 3) b. x2 + 5x + 6 = (x + 3) * ( c. -2x2 - 6x + 8 = (2x - 2) * ( d. 5x2 + 8x + 3 = (x + 1) * ( e. 6x2 - 6x - 21 = (2x + 3) * ( f. ab - 3a + 2b - 6 = g. x2 + 6x + 8 = h. 2x2 + 8x - 10 = 1.13 Potens-regning a. 312 b. 79 c. 93 d. 1 e. 57 f. 105 g. 58 1.14 Potens-regning a. x10 b. a2b4 Algebra og regneregler 1.12 - 1.14 5 Facitliste Ver. 1.27 c. a d. a3b e. b14 f. ab2 g. x2 h. 4a4 1.15 Potens-regning a. x7 b. x7 c. x6y4 d. x4y3 e. x5 f. x4 g. x5 h. 33x i. y4x4 j. 15x k. x-3 l. 1+b m. 4x3 – x5 n. a2b o. x2 p. a2/b3 q. b/a r. 2b s. b6 t. y3/x2 u. a2/b v. a5 w. a x. x2,5 1.16 Potensregning med lommeregner a. 3,38 Algebra og regneregler 1.15 - 1.16 6 Facitliste Ver. 1.27 b. 6,59 c. 0,06 d. 2,08 e. 1,62 f. 0,13 1.17 Omskriv til eksponentiel form a. 2,31 * 102 b. 4,3 * 10-3 c. 6,12 * 10-6 d. 2,34 * 105 1.18 Omskriv til meter og eksponentiel form a. 1,27 * 104 b. 5 * 10-2 c. 2,3 * 106 d. 2 * 10-4 e. 1,8 * 10-5 f. 5,81 * 10-7 g. 9,5 * 1015 1.19 Omskriv til kommatal a. 960 b. 0,0006 c. 243000 d. 8,5 e. 0,00000031 1.20 2. Procent 2.1 a. 34 % = 0,34 b. 75 % = 0,75 Procent 1.17 - 2.1 7 Facitliste Ver. 1.27 c. 57,5 % = 0,575 d. 315 % = 3,15 e. 2,5 % = 0,025 2.2 a. 0,25 = 25 % b. 0,5 = 50 % c. 1,03 = 103 % d. 1,0 = 100 % 2.3 a. 10 % af 340 = 34 b. 105 % af 20 = 21 c. 3,5 % af 2000 = 70 d. 250 % af 170 = 425 e. Læg 20 % til 230 = 276 f. Læg 4 % til 80 = 83,2 g. Læg 120 % til 45 = 99 h. Læg 86 % til 300 = 558 i. Træk 5 % fra 120 = 114 j. Træk 75 % fra 500 = 125 k. Træk 2,3 % fra 1200 = 1172,4 l. Træk 23 % fra 150 = 115,5 2.4 a. 465 l b. 50,4 m c. 612 kr d. 9,6 kg e. 420 cm f. 840 kr 2.5 a. 228,6 t b. 22,5 ≈ 22 eller 23 biler? c. Procent 2.2 - 2.5 652,5 mm 8 Facitliste Ver. 1.27 2.6 a. 1007,5 kr b. 1860 kr c. 62 kr 2.7 a. 350 kr b. 1275 kr c. 9312,5 kr 2.8 a. 112,5 kr b. 225 kr c. 450 kr 2.9 a. 400 kr b. 560 kr c. 1700 kr 2.10 a. 0,25 = 25 % b. 0,6 = 60 % c. 0,45 = 45 % d. 0,4 = 40 % 2.11 a. 0,22 = 22 % b. 0,78 = 78 % c. 0,9 = 90 % d. 1,35 = 135 % 2.12 a. 0,75 = 75 % b. 0,32 = 32 % c. Procent 2.6 - 2.12 0,125 = 12,5 % 9 Facitliste Ver. 1.27 d. 1,2 = 120 % 2.13 a. 1,25 dvs. en stigning på 25 % b. 2,2 dvs. en stigning på 120 % c. 1,6 dvs. en stigning på 60 % d. 1,7 dvs. en stigning på 70 % 2.14 a. 726 kr b. 2560 mm c. 1250 m d. 1023,90 kr 2.15 a. 4200 kg b. 560 kg c. 8050 kg d. 5700 kg 2.16 72 elever 3. Ligninger 3.1 a. Simple ligninger -2 b. 4 c. 3 d. -2 e. -8 f. 1 g. -4 h. 2 i. 0 j. 6 Ligninger 2.13 - 3.1 10 Facitliste Ver. 1.27 k. 5 l. 2 m. 4 n. 8 o. -5 p. 2 q. 0 r. Ingen løsning s. ¼ t. 7 u. 1 v. 2 w. 4 3.2 a. Simple ligninger -3 b. 4 c. 8 d. -1 e. 3 f. -5 g. -2 h. -4 i. ½ j. -1 k. 10 l. -2 m. -3 n. 5 o. -6 p. 2 q. 3 r. -3 s. -12 Ligninger 3.2 - 3.2 11 Facitliste Ver. 1.27 t. 11 u. -3 v. 7 w. -1 3.3 a. Udfordrende ligninger (som et eller andet sted er en slags simple ligninger!) 3 b. 4 v -4 c. 3 v -3 d. 2 v -2 e. 2 v -2 f. 5 v -5 g. -14 h. 0 i. 2½ j. 5 k. 4 l. -½ m. 1 n. 24 - (x + 2) (x - 2) = (12 + x) (4 - x) - 8 o. 15x2 - (3x + 2) (4x - 5) = 2 (x + 6) (1½x + 2) +1 p. (x - 3) (-x + 4) - 3 (x + 8) = (4 + x) (4 - x) q. (4x - 2) (3 + 8x) - (2x + 6) (6x + 4) = (4x - 6) (-3 + 5x) r. 9x2 + (3 - x) (8+ 2x) - 3 (x + 4) = x2 - (4 - 2x) (4 + 3x) s. 2x (4 - x) (3 + 2) = (2x - 8) (2 + 5x) - 4 * 15 - 20x2 t. 0 = 24x2 - (6x + 8) (4x - ½) - 4 u. 19 = -3 (3 - x) (x - 3) + (12 - x) (3x + 4) v. 16 + (3x - 4) (x + 8) = (x - 4) (4 + x) + 2x2 w. (x + 4) (2 + 4) (x - 3) = (3x + 1) (2x + 1) x. 0 = 16 + (2x - 3) (x + 4) - (5x + 4) 3.4 a. Ligninger 3.3 - 3.4 Husk på, at der kan være flere rigtige måder at opstille en ligning til en given opgave. Men der er kun et rigtigt facit! Vi sætter x til at svare til antallet af æbler, som Hans spiste 12 Facitliste Ver. 1.27 x+2x+½x+2=23 x=6 b. Vi sætter x til at svare til den 3. regning 35 + 2x + x = 215 x = 60 c. Vi sætter x til at svare til antallet af lånere. 10926 + 738 – 4x = 10904 x =190 d. Vi sætter x til at svare til bredden. 2 * (x + 4x) = 60 x=6 e. Vi sætter x til at svare til prisen for en adgangsbillet 85x + 6480 = 7840 x = 16 f. Vi sætter x til at svare til antallet af arbejdstimer på en dag. 3 * 36x + 2 * 42x = 1440 x = 7,5 g. Vi sætter x til at svare til antallet af mål i alt 1/4x + 1/3x + 1/8x + 1/12x + 5 = x x = 24 h. Vi sætter x til at svare til antallet af køer 4x + 2 (48-x) = 128 x = 16 i. Vi sætter x til at svare til antal meter, som græsplænen bliver forlænget med 8 (8 + x) = 100 x = 4,5 j. Vi sætter x til at svare til antal bægere og y til at svare til stykprisen 2.000.000 + 0,25x = x * y Ved 2,5 mio bægere: 2.000.000 + 0,25 * 2.500.000 = 2.500.000 y y = 1,05 Ved stykpris på 0,35: 2.000.000 + 0,25x = 0,35x x = 20.000.000 Ligninger 3.4 - 3.4 13 Facitliste Ver. 1.27 k. Vi sætter x til at svare til antallet af voksne. 30x + 6(380 – x) – 4920 = 720 x = 140 l. Vi sætter x til at svare til kilometertælleren x / 10 = x – 29367 x = 32630 m. Gåden skal selv løses, men her er et hint: prøv at lægge de 3 brøker sammen! 3.5 a. Identificer a, b & c i 2gradsligningerne – løs derefter ligningerne x = 1 v -3 b. x = 4 v -2 c. x = -8 v 1 d. x = 0 v 3 e. x=4v2 f. x = -7 v 4 g. x = -4 v 2 h. x = 1,5 i. x = -20 v -1 j. x = -8 v -10 k. ingen løsning 3.6 a. Ligninger – simple og 2grads -4 b. 1 v -2 c. 2 v -3 d. 5 v -1,5 e. 3 f. Ingen løsning g. -2 h. 4 v 2 3.7 a. Ligninger – udfordrende opgaver 3 b. 4 v -4 Ligninger 3.5 - 3.7 14 Facitliste Ver. 1.27 c. 5 v -3 d. 1 e. 3 f. 2 g. 4 h. 6 i. -1 j. 0v1 k. 0,5 2∨− 2 l. m. 3 n. 0,5 o. 2 v -2 p. 13 3.8 a. Pakke-ud øvelser 14 b. -1 v 0,75 c. -11 d. 90 e. 1,13 f. 1 g. 14 v 1,33 h. 88,55 i. -1 v 4 j. 1v3 3.9 Et trekantsproblem 12,71 3.10 Plænen med søen 8,60 m 3.11 Løs med logaritme a. Ligninger 3.8 - 3.11 log(200) / log(1,45) = 14,26 15 Facitliste Ver. 1.27 b. 13,72 c. 2681,2 d. 9,2 e. 119,8 f. Efter 2,5 år 3.12 Styrketræning 1- simple ligninger a. 3 b. 5 c. -2 d. 1½ e. 6 f. -402 g. 85 h. 64 ¼ i. -6,5 j. 20,185 3.13 Styrketræning 1 – blandede ligninger a. 1 v -5 b. 4 c. 2 d. -1 v 3,5 e. -2 v 5 f. -7 g. Ingen løsning h. -2 ⅔ i. 2½ j. 6,91 v 18,09 3.14 Styrketræning 1 – udfordrende ligninger a. 2 v -4 ⅓ b. 2 v -8 c. 3v1 d. 3 v -⅔ Ligninger 3.12 - 3.14 16 Facitliste Ver. 1.27 e. -1 v 2 f. Ingen løsning g. -3 v -½ h. -2 v 0,6 i. 1,015 j. 2 v -2 v 1 v -1 (vær opmærksom på at der skal være 4 løsninger) 3.15 Styrketræning 1 – ”Du har selv bedt om det…” a. (K – 273,15) * 1,8 + 32 b. 3 v -2 v -3 c. a+1 d. 5 e. = f. -4 v 2 g. -6 v 1 h. 7,40939 i. 2a – 3 j. q v -½q 3.16 Styrketræning 1- simple ligninger a. 3 b. 18 c. 5 d. 26 e. 3 f. 12 g. 14 h. 21 i. -3 j. 9 k. -11 l. 20 m. 3 n. 4 Ligninger 3.15 - 3.16 17 Facitliste Ver. 1.27 o. 14 p. 1 q. 11 r. 0 3.17 Styrketræning 2 – blandede ligninger a. 3v5 b. 2 c. 1 v 2⅓ d. 4 e. -18,6528 v 0,0249 f. -2,5979 v 0,5979 3.18 Styrketræning 2 – udfordrende ligninger a. 3,3219 b. -1 c. -17 d. -1 v 25 e. ¼ f. 6 g. 10 h. -2 v 1 i. 270° v 30° v 150° (I radianer: 1½π v π/6 v 5/6π) og helcirkler derover 3.19 Styrketræning 3 – 2gradsfunktioner a. 3 v -7 b. 1 v 19 c. -27 d. Ingen løsning e. 2,5 v 6,5 f. -1 v 3⅓ g. -2,5 v 4,15 h. 1 v 14 i. 2 ∨ −3 j. Ingen løsning Ligninger 3.17 - 3.19 18 Facitliste Ver. 1.27 4. Funktioner – lineære & hyperbel 4.1 4.2 a. y=x–4 b. y = -2x – 4 c. y = -⅓x + 5 d. y = -2½x – 5 e. y = ⅔x – 1⅓ f. y=x+2 4.3 a. y=x+2 b. y = -2x + 1 c. y = ½x – 2½ d. y = 4 e. y = ¼x + 3 f. y = -0,4x g. y = -0,1x – 1,5 h. y = -3x + 20 i. y = ¾x + 12 j. y = ⅔x - 4⅔ 4.4 a. y = 250x – 6000 b. y = 8x + 500 c. y = -3x + 100 4.5 a. f(x) = 30 + 5x 14 km b. f(x) = 159 – 3x 138 kg Efter 20 uger Funktioner – lineære & hyperbel 4.1 - 4.5 19 Facitliste Ver. 1.27 c. f(x) = 59 + 0,37x d. f(x) = 3x – 142 4.6 a. f(x) = 2x + 3 b. f(x) = -13x + 66 c. f(x) = 3x + 37 d. f(x) = 11x + 24 24 medlemmer 4.7 a. x = -1 y=3 b. x = 4 y=1 c. x=2 y=2 d. x = 5 y = 3,75 e. x=4 y=5 f. alle tal er løsning – de to ligninger er sammenfaldende g. x = 2 y=5 h. x = 4 y=2 i. x=2 y=3 j. x=4 y=7 k. x = -2 y = -1 l. x = 1,5045 y = 3861,08 m. x = 685,71 Funktioner – lineære & hyperbel 4.6 - 4.7 20 Facitliste Ver. 1.27 y = 552,14 n. 7 & 3 o. 17t 27m p. x = -2 y=3 y=1 4.8 a. Ved 71.429 km er biler lige dyre b. Efter 68.493 kopier c. Økonomi-abonnementet er billigst efter 1.057 minutter d. Efter 600 minutter er konkurrentens tilbud billigst. Men efter 2.200 minutter er Økonomi-abonnementet det billigste. e. 8,9 år f. 6,2 år g. 93 øre 4.9 a. 5,33 m b. 8 m c. 16 m d. e. 8x8m 4.10 a. b. y = 145/x c. x>0 Desuden vil for stor x-værdi være urealistisk – kan han have en gennemsnitsfart på over 200 km/h? 4.11 Omvendt proportionalt 4.12 a. b. c. Funktioner – lineære & hyperbel 4.8 - 4.12 21 Facitliste Ver. 1.27 d. e. f. Positiv: Hyperblen ligger i 1. og 3. kvadrant. Negativ: Hyperblen ligger i 2. og 4. kvadrant. Jo større a, des længere væk fra centrum 12 x 4.13 y = 4.14 y = x & y = -x 4.15 a. y = x – 3 & y = -x – 3 b. y = -3 & x = 0 4.16 (-1; 3) 4.17 a. Flytter hyperblen op og ned b. Under brøkstregen skal der lægges til: y c. = a x+c +b (-c; b) 4.18 y = a x−3 −2 4.19 5. Parabler 5.1 Parabler 4.13 - 5.1 Opgave Diskriminant Toppunkt Nulpunkter a b c d e f g 1 0 -8 4 16 0 64 (2,5 ; -0,25) (1; 0) (-1; 2) (3; -1) (-9; -2) (1,5; 0) (1; -16) 3˅2 1 Ingen løsning 2˅4 -10 ˅ -8 1,5 -3 ˅ 5 22 Facitliste Ver. 1.27 h i j 5.2 169 25 121 (-0,75; 21,125) (1/6; 2 1/12) (-1,5; -30,25) -4 ˅ 2,5 1 ˅ -2/3 -7 ˅ 4 Bestem forskrifterne på parablerne Brun(x) = Blå(x) = Rød(x) = Lilla(x) = Gul(x) = Grøn(x) = 5.3 5.4 5.5 5.6 5.7 f(x) = x2 – 4x + 3 g(x) = x – 1 Beregn skæringspunkter mellem f(x) og g(x) 5.8 a. y = (x – 2)*(x + 4) Bestem skæringspunkterne. b. Var der en lettere måde at finde skæringspunkter? 5.9 a. En kugle skydes af sted. Dens bane har form af en parabel med forskriften: f(x) = -0,32 x2 + 8,4x Hvor højt bliver kuglen skudt op? b. Hvor passere den en højde på 50 m ? Husk der er 2 løsninger. 5.10 Stenkast Hvis en sten bliver kastet, sådan at dens bane kan beskrives med funktionen: y = 0,025x2 + 0,5x + 1,8 a. Hvor langt kastes stenen? b. Kan den komme over en mur på 4,5 m? Parabler 5.2 - 5.10 23 Facitliste Ver. 1.27 c. Hvad skal afstanden mellem kasteren og en mur på 4 m være, for at stenen kan komme over? 5.11 Storebæltsbroen. Bærekablerne mellem brotårnene på Storebæltsbroen hænger i en parabelformet bue. Brotårnene har en højde på 254 m over havets overflade, mens vejbanen er 72 m over havets overflade. Afstanden mellem de to brotårne er 1624 m. Beregn funktionen, der beskriver den parabelformet bue. Tip: Lad parablens toppunkt lægge i (0; 0). 5.12 5.13 f ( x ) = −2 x + 7 g ( x) = 3x a. Beregn skæringspunkter mellem f(x) og g(x) 5.14 6. Vækstfunktioner 6.1 6.2 6.3 6.4 6.5 Vækstfunktioner 5.11 - 6.5 24 Facitliste Ver. 1.27 6.6 6.7 a. Regn baglæns 4900 b. 1534 c. 6.8 a. 2300 Find renten 2,0 % b. 1,5 % c. 3,5 % 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 Vækstfunktioner 6.6 - 6.23 25 Facitliste Ver. 1.27 6.24 6.25 6.26 6.27 6.28 6.29 6.30 Opstartsopgaver a. 11.653,50 kr b. 12.500 kr c. 3,75 % 6.31 I landet Ydre Utopia har man en befolkningstilvækst på 2,7 %. Befolkningstallet var i 1995 3,7 mio mennesker. a. 4,8 mio b. Omkring 2013 6.32 2,2 % 6.33 4,7 % 6.34 15,49 % 6.35 Et radioaktivt stof henfalder med 1,8 % om året a. 63,5 % b. 38,2 år 6.36 Fordoblingstid og meget andet… a. 10,24 år – bare rolig, så præcist kan det ikke aflæses b. 7 % c. (1 + 0,07) & 25.000 d. y = 25000 * 1,07x e. 96742 6.37 Vækstfunktioner 6.24 - 6.37 26 Facitliste Ver. 1.27 7. Økonomi 8. Geometri 8.1 Ordbog 8.2 Arealformler 8.3 Beregn areal a. 5 b. 12,75 c. 3,75 d. 16,5 e. 18 f. 9,5 8.4 21,2 8.5 8.6 27,7 8.7 26 8.8 541 8.9 1,4 8.10 Forskellige veje til areal Trapez – trekant: (4+1)/2*4 – 0,5*3*4 = 4 Firkant – 2x trekant: 4*4 – 2 * 0,5*3*4 = 4 Lav en vandret snit igennem firkant → 2 trekanter: 0,5 * 4 2 + 4 2 * 12 + 12 = 4 eller: 2 * 0,5*1*4 = 4 8.11 Rumfangformler Økonomi 8.1 - 8.11 27 Facitliste Ver. 1.27 8.12 Beregn rumfang a. 64 cm3 b. 129,6 cm3 c. 1035 cm3 = 1,04 l d. 13,7 cm3 e. 1571 cm3 = 1,57 l f. 65,4 cm3 8.13 Akvarium a. 72 l b. 64,8 l c. 33,3 cm 8.14 Planke a. 20.000 cm3 = 20 l b. 5 kg 8.15 7,45x7,45x18 cm 8.16 Beregn rumfang a. 229 cm3 = 0,2 l b. 213 dm3 = 213 l c. 123 dm3 = 123 l 8.17 Trykflaske a. 6825 cm3 = 6,8 l b. 2155 cm2 8.18 1,82 m3 = 1820 l 8.19 Når luften tynger a. 8000 m3 b. 10,4 t 8.20 898,5 kg 8.21 Geometri 8.12 - 8.21 28 Facitliste Ver. 1.27 8.22 8.23 8.24 Nej 8.25 a. Ja b. Nej c. Ja d. Nej e. Nej f. Ja 8.26 8.27 8.28 8.29 8.30 8.31 8.32 8.33 18 8.34 8.35 a. 12,5 & 6,25 b. 8,97 & 24,73 8.36 6 & 5 & 3,61 8 & 6,67 & 4,81 8,48 & 7,07 & 5,1 Geometri 8.22 - 8.36 29 Facitliste Ver. 1.27 10,77 & 8,98 & 6,47 8.37 13,56 8.38 a. 2,46 m b. 2,78 m 8.39 a. 25 m b. 111,8 m 8.40 7,52 = 56,25 8.41 8.42 8.43 8.44 8.45 8.46 a. 90 & 18 & 72 3 & 9,23 & 9,71 b. 90 & 50 & 40 7,81 & 4,50 & 5,36 c. 90 & 33,7 & 56,7 8,06 & 4,47 & 6,7 d. 90 & 42 & 48 10 & 9,00 & 13,46 8.47 8.48 8.49 Geometri 8.37 - 8.49 30 Facitliste Ver. 1.27 8.50 8.51 8.52 8.53 8.54 8.55 8.56 9. Statistik 9.1 Mindsteværdi = 1,52 Størsteværdi = 1,86 Variationsbredde = 0,34 Median = 1,70 Gennemsnit = 1,70 9.2 9.3 24,65 min = 24m 39s 9.4 10. Sandsynlighedsregning 10.1 11. Repetition 11.1 Simple ligninger Statistik 8.50 - 11.1 31 Facitliste Ver. 1.27 a. -2 b. 3 c. 2 d. 14 e. 3 11.2 2.gradsligninger a. -3 v 0,5 b. 1 v -2,25 c. -2 d. 5 v -2 e. 5 v -1 f. Ingen løsning 11.3 Blandede a. -1 b. 4 v -1 c. -4 d. 2 e. -2 v 1,5 12. Fagdage 12.1 a. x = 5, y = 4 b. x = 2, y = -7 c. x = 3, y = -1 d. x = -4, y = -3 12.2 a. x = 1, y = 3, z = 0 b. x = -11, y = -6, z = -2 c. x = -1, y = 14, z = 22 d. x = 3, y = 4, z = -1 Fagdage 11.2 - 12.2 32 Facitliste Ver. 1.27 12.3 a. a = -2, b = 2, c = 1, d = 6 b. a = -11, b = 4, c = 7, d = 8 c. a = -4, b = 6, c = 3, d = 2 d. a = -17, b = 49, c = 9, d = 14 12.4 a. a = 3, b = 2, c = -1 b. a = 13, b = 9, c = -5 12.5 Fagdage 12.3 - 12.5 33
© Copyright 2024