Desain implementasi sistem

Desain Implementasi dan
Analisis Elektronika Kontrol
Eka Maulana, ST, MT, MEng.
Universitas Brawijaya
Outline
• Sistem input
• Sistem Pengendali
• Sistem output
• Desain Hardware
• Desain Software
• Desain dan Analisis Sistem Kontrol
Design - Control
Deskripsi
Model Fungsional
(model diskrit)
Executable Model
Untuk Rapid
Prototyping
Simulasi
Verivikasi
OS ECU
Model Fungsional
(model kontinyu)
ECU Code
Advanced Design and Validation Techniques for Electronic Control Units - Society of Automotive Engineers
Pertimbangan Pemilihan Sistem Pengendali
Diharapkan memiliki:
Akurasi yang lebih baik
Kepresisian yang meningkat
Pengaturan Parameter lebih mudah
Biaya maintenance lebih murah
Mudah diintegrasikan dengan sistem lain
Kemudahan tuning & sistem adaptive
Systems Development Cycle
Identify
Requirements
Conversion/
Implementation
Feasibility
Analysis
Training
Determine
System
Specifications
Operations
Develop
Programs
Maintenance/
System Auditing
Design
Procedures
System Analysis
Sistem Kontrol Mekanik Analog
6
Sistem Kontrol Mekanik Digital
7
Sistem Kontrol Elektrik untuk Energi
8
Representasi Sistem Kontrol Analog Loop Tertutup
r(t)
y(t)
u(t)
+
D(s)
Plant
y(t)
Kontroler Analog (Kontinyu)
9
Blok Diagram Sistem Kontrol Digital Loop Tertutup
Objek Kontroller
10
Representasi Sistem Kontrol Digital Loop Tertutup
11
Integrated Prototyping
Dekomposisi Fungsional
Proses Development
Interaksi Manufaktur
Pengendalian Switching Converster
Control and Feedback
Model - negative feedback control
Regulator system – small signal block diagram
Control Diagram of a Typical Control Loop
Actuator
System
F1
F2
T1
T2
Sensor
System
Controller
T
F
TC
TT
Components and Signals of a Typical Control Loop
Actuator System
F1
F2
T1
T2
Thermowell
3-15 psig
T
F
Air
I/P
Operator
Console
4-20 mA
Tsp
D/A
DCS
Control
Computer
Controller
Thermocouple
millivolt signal
A/D
4-20 mA
Transmitter
Sensor System
PID Controllers
• PID control consists of a proportional plus derivative (PD)
compensator cascaded with a proportional plus integral (PI)
compensator.
• The purpose of the PD compensator is to improve the transient
response while maintaining the stability.
• The purpose of the PI compensator is to improve the steady
state accuracy of the system without degrading the stability.
• Since speed of response, accuracy, and stability are what is
needed for satisfactory response, cascading PD and PI will
suffice.
The Characteristics of P, I, and D Controllers
Note that these correlations may not be exactly accurate, because Kp, Ki, and Kd are dependent
of each other. In fact, changing one of these variables can change the effect of the other two. For
this reason, the table should only be used as a reference when you are determining the values for
Ki, Kp and Kd.
Response
Rise Time
Overshoot
Settling
Time
SS Error
KP
Decrease
Increase
Small
Change
KI
Decrease
Increase
Increase
Eliminate
KD
Small
Change
Decrease
Small
Change
Decrease
Decrease
Metode Tuning PID
• Manual Tuning (Trial and Error)
• Ziegler-Nichols Method
• Cohen-Coon Method
• Tyreus-Luyben Method (Closed-loop P-Control test)
• Autotune Method (Closed-loop On-Off test)
• Ciancone and Marline Method
• Internal Model Control (IMC)
• Fertick Method