((2011)) E. (( )) http://www.basra-science-journal.org: ISSN-1817-2695 Fusarium oxysporum Schl f.sp. lycopersici / Elsa ) / Pseudomonas fluorescens pf. D.S ( Fusarium oxysporum Schl .f.sp lycopersici Pseudomonas fluorescens 3 F.o.l. P.D.A. Elsa F.o.l . . 2.4 3 %100 . (SA) + CuSO4 H2O +F.o.l. P. fluorescens + Salicylic acid . P. fluorescens .N.P.K Pseudomonas fluorescens (19) Phytoalexin Fusarium oxysporum f.sp. lycopersici : (18) (ISR) PR-) Induced Systemic Resistance (34) Pathogensis- related protein (Protein Activation of programmed cell death 19 ... : & (17) Hypersensitive reaction endogenous signel .(20) Pseudomonas fluorescens .(12) PR-protien .(35) Jasmonic acid .(31) SA (ISR) Fusarium oxysporum lycopersici O-antigen of lipopolyasacharides .(23) . -2 0.5 .( / . )% / / . -2:1:2 P. 2009- fluorescens F.o.l . .2008 ( spotting ) -1:2 P.fluorescens -1:1:2 . F.o.l KB 9 / F.o.l Fusarium f.sp lycopersici oxysporum P.D.A. . 1 .(6) Aghigi 0.45 .(Potato Dextrose Agar) P.D.A. Cellulos Acetate Fillter .o 1± 27 Fillter) .(9) Booth .(Membranne molecular (11) Dewan 100 .(14) .Miliaceum Panicum 10 -3:1:2 Elsa P.D.A (1:1) F.o.l Elsa ppm 1000 / ( (% 50 Carbendazim) 20 / F.o.l ) % 0.5 ... : & 100 1 ± 27 P.D.A. . 50 40 30 P.D.A. . 10 0 9 0.5 -: (3) F.o.l 3 – 100 × 20 = Elsa P.fluorescens F.o.l P.D.A. 100 % -4:1:2 CuSO4.5H2O Salicylic acid (2) / (3:1:2) . (5) / 0.1 0.75 / / 200 100 Elsa F.o.l P.D.A. SA × 8 (30) 10 8 ml/ cfu 10 × 8 (14) 10 5 8 / 1000 8 10 10 × 3 .ml/cfu 10 P.fluorescens P.D.A. 300 200 100 0 . F.o.l -5:1:2 100 500 400 (3:1:2) . / -2:2 15 . 15 1:1 ) . . : SA 100 × CuSO4.5H2O = 21 ( ... : & : 0 1 2 3 4 : (24) ( 1996 ) Juber 4×4 Mckenny +... + 0 × 0 × 100 × = % : -1 Spectrophotometer Riley Murphy 700 . (25) .Flame photometer -2 : -5 / Total Soluble Solide (TSS) ) = ( .Hand refraactometer ) 100 × ( -3 . -:N.P.K -4 Distillation (27) Page Unit -3:2 Arcsine transformation C.R.D. R.L.S.D. 0.05 R.C.B.D. 0.01 .(1) P. 3 3 (1) F.o.l (4) -1:3 fluorescens F.o.l 2.4 P. fluorescens . P. fluorescens F.o.l 22 -3 ... Catalase : & .% 100 Chitinolytic enzyme .(8) P. fluorescens HCN Phenzain -1- caroxylate (33) F.o. l P. fluorescens : (1) ( ) P. fluorescens +++ 3 +++ 3 +++ 2.4 P. fluorescens 0.46 R.L.S.D (0.01) 100 P. fluorescens 10 % 45.56 Elsa F.o.l F.o.l 4.90 -2:3 P.D.A. (1) (Carbendazim) Elsa F.o.l 50 %100 % 83.7 1.46 . (29) Eswaran F.oxysporum . F.o.l 500 Sanjeev %0 9 f.sp. vasinfectum (26) 0 . (16) Gangawane .F.o.l. Ozgonen (SA) Carbendazim Benzimedazole Elsa .µm 0.6 DNA .(3) (3) (2) F.o.l. %0 23 9 ... : & .(3) F.o.l Elsa F.o.l (1) F.o.l (3) (2) % % *0 ( ) ppm 9.00 Control 0 9.00 100 10 8.1 200 61 3.51 300 73.6 2.37 400 83.7 1.46 500 6.11 0.55 R.L.S.D (0.01) ( ) ppm *0 9.00 0 9.00 10 7.11 8.36 20 18.21 7.36 30 29.67 6.33 40 45.56 4.90 50 5.40 0.48 * Control R.L.S.D (0.01) * -3:3 pf. (4) P. fluorescens DS ) P. fluorescens pf. DS F.o.l (Elsa 24 ... : & F.o.l. . P. P. Cu +SA + fluorescens (ISR) fluorescens %9.92 SA %11.74 F.o.l %90 %63.44 .(28) pathogensis related protein (F.o.l.) SA + P. Cu+SA+F.o.l 0.638 0.160 ) F.o.l. ( .(22) PR- Protein 0.161 0.054 -4:3 pf. (4) P. fluorescens DS P. fluorescens (21) F.o.l Jinnah F.o.l . P. fluorescens / / %7.69 .Ralstonia solanacearum 81.14 (15) Katan P. (5) P. + SA+ Cu + F.o.l. / fluorescens Gamliel fluorescens 8.85 (F.o.l.) %61.59 fluorescens P. . gibberellins Cytokinins %80 -65 fluorescen / 3.5 / 73.36 / 19 . Indole acetic acid (32) ) F.o.l Siderophores Pyochelin ( Pseudobactin ) Pyovedine .(10) SA %0.466 SA 135.2 4. 58 25 1.80 .( %3.95 K .F.o.l El-khallal 4.28 P N . %2.40 ... : & (13) .F.o.l SA .(7) P. fluorescens pf.DS % ( ) (4) % ( ) 0.655 0.180 0 0 0.161 0.782 0.854 1.214 0.730 0.371 0.445 0.054 0.190 0.210 0.226 0.173 0.108 0.122 63.44 0 0 0 0 31.05 20.94 90.00 0 0 0 0 41.72 35.24 F.o.l Cu SA P. fluorescens pf.DS Elsa Cu SA + F.o.l 0.466 0.125 19.22 29.98 P. f + F.o.l 0.378 0.093 24.83 35.24 Elsa 0.425 0.114 17.05 23.49 Cu +P. f+ F.o.l 0.590 0.155 17.05 23.49 SA + P. f + F.o.l 0.525 0.135 14.89 18.23 Elsa +P. f + F.o.l 0.638 0.160 9.92 11.74 Cu +SA +P. f + F.o.l 0.486 0.124 19.22 23.49 Elsa + Cu + SA + F.o.l 0.307 0.103 35.24 48.21 P. f + F.o.l 0.08 0.021 3.25 3.71 26 + F.o.l (0.05) R.L.S.D ((2011)) E. (( )) P. fluorescens pf.DS (5) ( ) %K %P %N 2.47 0.399 4.04 140.1 1.20 0.236 2.69 2.64 0.434 2.81 / ( ) 4.60 3.9 71.5 58.4 1.80 1.1 4.20 140.2 4.71 0.480 4.19 144.3 2.87 0.492 4.33 2.78 0.438 1.99 / % % 20 0 0 41.3 9.33 61.59 81.14 3.8 73.67 21 0 0 Cu 5.21 4.0 75.63 23 0 0 SA 149.8 6.17 4.2 81.80 25.33 0 0 P. fluorescens pf.DS 4.63 142.4 4.71 3.8 74.00 20.00 0 0 0.364 3.66 114.7 2.93 2.6 60.00 14.00 26.49 35.00 Cu 2.25 0.327 3.75 125.4 3.33 2.9 63.3 15.33 24.57 30.78 SA + F.o.l 2.30 0.349 3.73 127.7 3.67 3.2 65.4 16.00 21.37 26.56 P. f + F.o.l 2.08 0.304 3.21 114.8 3.00 2.5 57.30 14.67 25.57 30.78 Elsa 2.23 0.372 3.63 120.0 3.62 3.2 68.00 16.67 20.27 21.93 Cu +P. f+ F.o.l 2.35 0.436 3.81 130.5 3.93 3.3 71.70 18.00 16.43 21.93 SA + P. f + F.o.l 2.26 0.430 3.87 129.8 3.76 3.3 70.30 17.00 12.23 17.70 Elsa +P. f + F.o.l 2.40 0.466 3.95 135.2 4.28 3.5 73.36 19.00 7.69 8.85 Cu +SA +P. f + F.o.l 2.19 0.422 3.85 123.3 3.89 2.8 60.60 16.33 17.71 26.56 Elsa + Cu + SA + F.o.l 2.15 0.358 3.22 112.2 2.76 2.2 52.80 13.67 36.47 39.23 P. f + F.o.l 0.68 0.082 0.68 8.78 0.86 0.87 4.85 1.77 7.76 16.28 F.o.l Elsa + F.o.l R.L.S.D (0.05) * 27 ... : & -4 Verticillium dahliae and Sacchharomyces cerevisiae. Asain Journal of Plant Sciences 3(4):463471. (2004). 7- Antoniw, J. F.; White, R. F. The effect of aspiin and polyalic acid on soluble leaf protien and resistance to virus infection in five cultivars of tobacco. Phytopathol Z98: 331 341. (1980). 8- Banasco, P., Fuente, L De La, Gaultieri, G., Noya, F. and Arias, A. Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol. Biochem., 10, 1317–1323. (1998). 9- Booth, C. The Genus Fusarium wealt common.Mycological, Institute, Kew, Surrey, England. (1971). 10- De Meyer G and Höfte M . Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathol 87: 588–593. (1997). 11- Dewan, M.M. Identity and frequency of occurrence of fungi in roots of Wheat and rye grass and their effection take-all and host growth. Ph D. thesis, Univ. Wes. Australia.210pp. (1989). 12- Durrant, W.E. and X. Dong. Systemic acquired resistance. Annu Rev Phytopthol., 42: 185-209. (2004). 13- El- Khallal. S. M. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (Jasmonic acid & Salicylic acid): 2-Changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Australian Journal of Basic and 28 -1 . – . – 486 .(1980) . Pythium . -2 aphanidermatum 108. .(2005) . -3 .(1993) . 250 . -4 Pseudomonas Fusarium oxysporum fluorescens Schl.f.sp. lycopersici . 94 .(2005) . -5 / . .(2008) .57-50: 26 6- Aghighi, S., Bonjar, G.H., Rawashdeh, R., Batayneh, S. and I. Saadoun. First report of antifungal spectra of activity of Iranian Actinomycetes strains against Alternaria strains, Alternaria alternata, Fusarium solani, Phytophthora megasperma, ((2011)) E. steijl, H. Iron availability affects induction of systemic resistance to fusarium wilt of radish by pseudomonas flurescens. Phytopathl. 86:149-155. (1996). 23- Leeman, M.; Van Pelb, J.A; De Ouden, E.M; Heinsbroek, M; Bakker, P.A. H.M. and Schipper, B. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Psendomonas fluorescens. Phytopathol. 85: 1021-1027. (1995). 24- Mckenny, H. H. Influence of soil temperature and moisture on Infection of Wheat seeding by Helminthosporium sativum. J. Agri. Research 26:195-217(1923).(C.F) Juber, K. S. Biological control for diseases complex of root knot nematode Meloidogyne javanica and the fungus Fusarium solani. Ph. D. thesis college of Agri. University of Baghdad. (1996)..(in Arbic). 25- Murphy, T. and Riley, J.R. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta.27:31-36.(1962). 26- Ozgnen, Hulya., Mchemt Bic, ici and Ali erkilic. The Effect of salicylic acid and Endomoycorrhizal fungus Glomus etunicatum on plant Development of Tomatoes and Fusarium oxysporum f. sp. lycopersici. Turk. J. Agric. 25: 2529. (2001). 27- Page, A. L., Miller, P.H.and Keeney, D. R. Methodes of soil Analysis. Part (2)2nd. ed. Madison. Wiscon. USA. (1982). 28- Pieterse, C. M.J., Van Ple, Johan. A. , Vanwees. Saskia C. M., Ton Jurriaani ., Lwon –Klossterziel. Karen M., Keurentjes . Joost. J. B., Verhagen. Bas. W. M., Knoester. Marga., Van der Sluis. Icntse., Bakker, peter A. H. M . and VanLoon L. C. Rhizobactria Mediated induced systemic (( )) Applied Sciences,1(4): 717-732. (2007). 14- Furuya. N., Kushima. Y., Tsuchiya. K., Matsuyama. N., and Wakimoto. S. Protection of tomato seedings by Pre-treatment with Pseudomonas glumae from Infection with Pseudomonas solanacearum and Its Mechanisms. Ann. Phytopathl. Soc. Japan. 57:363-370 .(1991). 15- Gamliel and Katan. Suppression of major and minor pathogens by fluorescent Pseudomonas in solarized and non solarized soils. Phytopathol. 83(1): 68-73. (1993). 16- Gangawan, L.V. Fungicide resistance in plant pathogens in india. Malaysion plant protection Society p:117-121 .(1993). (abstract). 17- Grant , M. and Mansfield , J. Early events in host. Pathogen interaction . current opinion plant Biology 2: 312 -319. (1999). 18- Hammerschmidt, R. induced disease resistance : how do induced plants stop pathogen? Physiology molecular plant patholgogy 55: 7784. (1999a). 19- Hammerschmidt, R. phytoalexius: what have we learned after 60 years? Annual reiew phytopathol. 37 : 285-306. (1999b). 20- Hayat, S, A.; Ahmad, B. A. Salicylic acid: Biosynthesis, metabolism and physiological role in plants.(C.F) Hayat, S,A. Ahmad , B. A. eds, Salicylic acid: A Plant Hormone. Springer, Dordrecht, pp 1-14 . (2007). 21- Jinnah. M. A.; Khalequzzamam. K. M.; Islam. M.S.; Siddique. M.A.K.S. S.;Ashrafuzzaman. M. Control of Bacterial Wilt of Tomato by Pseudomonas fluorescens in the Field. Pakistan Journal of Biological Sciences; Issue: 5(11) pp:11671169.(2002). 22- Leeman, M.; Denouden, F.M.; Vaupelt, J.A.; Dirkx, F.P.M. and 29 ... : in : Phytopathogenic Procaryotes. Vol. 1. M. S. Mount and G. H. Lacy, eds, Pages 187-223.( 1982). 33- Thomashow L. S. and Weller. D. M. Role of Aphenazine antibiotic form pseudomonas fluorescens in biological control of Geaumannomyces var. tritici. J. Bacteriol. 170 (8) : 3499-3508. (1988). 34- Van Loon. L. C. Induced resistance in plants and the role of pathogensis – related protein. Europen Journal of plant pathology 103: 753-765. (1997). 35- Voisard, C., Keel, C., Haas, D., and Defago, G. Cyanide production by Pseudomonas fluorescens helps suppress blak root rot of tobacco under gnotobiotic conditions. EMBO(Eur. Mol. Biol. Organ.) J., 8 : 351-295. (1989). & resistance : triggering signaling and expression . European Journal of plant pathology 107: 51-61. (2001). 29- Sanjeev K. K. and Eswarah A. Efficacy of Micro Nutrients on Banana Fusarium wilt Fusarium oxysporum f.sp. cubense and it’s synergistic with Trichoderma viride .Notulae Botanicae Horti AgrobotaniciCluj-Napoca. 36(1) :52-54. (2008). 30- Siddiqui, Z, A.and Mahmood. I. Effect of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresoures Technology. 79:41-45.(2001). 31- Sticher. L.; Mauch – Mani , Band Metraux, J. P. Systemic Acquired Resistance. Annual Review of Phytopathol 35 : 235 – 270. (1997). 32- Suslow, T. V. Role of rootcolonizing bacteria in plant growth. Efficiency of Some Chemical and Biological Induction Compounds In The Reduction of The Tomato Plant Infection by The Fungus Fusarium oxysporum Schl. f.sp.lycopersici J. T. A. AL-korany and M. A. Fai'adh Plant Protection / College Agriculture / University of Basrah Abstract This study was aimed to evaluate the affectivity of some chemical and biological factors (the fungicide Esla, copper, and salicylic acid) and the bacteria Pseudomonas fluorescens pf. DS singularly or collectively in reduce infection of plant tomato by disease Fusarium wilt disease caused by Fusarium oxysporum Schl f.sp lycopersici.The results showed that P. fluorescens and the bacterial filtered treated and untreated with heat have a high antagonistic ability in inhibition growth of F.o.l. in the culture where inhibition zone reached 3,3 and 2.4 cm respectively. The results also showed that fungicide Elsa inhibition the growth of the infections fungus F.o.l completely reaching 100% rate in all concentration tested 10-50 ppm. Copper and salicylic acid showed no effect on the fungus growth at low concentration , whereas high concetration inhibted the fungus growth. The treatment with ( P. fluorescens + salicylic acid + CuSO4 H2O + F.o.l ) achieves the least infection rate in the green house and the field. The chemical factors induce resistance and P. fluorescens cause an increase in some parameters of the shoot growth as the dry wieght of shoot and root system and N. P. K . 30
© Copyright 2024