Data Converters EECT 7327 Data Converter Basics Data Converter Basics –1– Professor Y. Chiu Fall 2014 Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 A/D and D/A Conversion A/D Conversion Analog in DSP AAF S/H Digital out Quantization D/A Conversion Digital in Analog out DSP D/A S/H –2– Smoothing filter Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Quantization A/D Analog input ... Vref bn b1 Digital output Division : Dout N Vin = 2 V FS • Quantization = division + normalization + truncation • Full-scale range (VFS) is determined by Vref –3– Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Quantization Error Dout 7 Δ= 6 VFS = LSB 2N 5 4 3 VFS 2 VFS 2 2 Vin V ε = Dout Δ - Vin = Dout FS - Vin N 2 1 0 -3Δ -2Δ -Δ ε 0 Vin 0, VFS Δ 2Δ 3Δ - N=3 Δ Δ ε 2 2 Δ/2 Vin 0 -Δ/2 -3Δ -2Δ -Δ 0 Δ 2Δ 3Δ –4– “Random” quantization error is usually regarded as noise Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Quantization Noise ε Assumptions: Δ/2 Vin 0 -Δ/2 Δ 2Δ 3Δ 4Δ 5Δ 6Δ 7Δ VFS Pε • N is large • 0 ≤ Vin ≤ VFS and Vin >> Δ • Vin is active • ε is Uniformly distributed • Spectrum of ε is white 1/Δ Δ/2 1 Δ2 σ ε = ε dε = Δ 12 -Δ/2 2 -Δ/2 0 Δ/2 ε 2 Ref: W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27, pp. 446472, July 1948. –5– Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Signal-to-Quantization Noise Ratio (SQNR) Assume Vin is sinusoidal with Vp-p = VFS, 2 SQNR = VFS / 8 = σε2 2N Δ / 8 2 Δ 12 2 = 1.5 22N, SQNR = 6.02 N+1.76 dB N (bits) SQNR (dB) 8 49.9 10 62.0 12 74.0 14 86.0 • SQNR depicts the theoretical performance of an ideal ADC • In reality, ADC performance is limited by many other factors: – Electronic noise (thermal, 1/f, coupling/substrate, etc.) – Distortion (measured by THD, SFDR, IM3, etc.) –6– Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 FFT Spectrum of Quantized Signal PSD SQNR = 61.93 dB ENOB = 9.995 bits 0 -20 • 8192 samples, only f = [0, fs/2] shown • Normalized to Vin -40 dB • N = 10 bits • fs = 8192, fin = 779 -60 • fin and fs must be incommensurate -80 -100 -120 0 500 1000 1500 2000 2500 Frequency 3000 3500 4000 ENOB = SQNR -1.76 dB 6.02 dB Ref: W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27, pp. 446472, July 1948. –7– Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Commensurate fs and fin PSD 0 PSD 0 fs = 8192 fin = 256 -20 -20 -40 dB dB -40 -60 -60 -80 -80 -100 -100 -120 fs = 8192 fin = 2048 0 500 1000 1500 2000 2500 Frequency 3000 3500 -120 4000 0 500 1000 1500 2000 2500 Frequency 3000 • Periodic sampling points result in periodic quantization errors • Periodic quantization errors result in harmonic distortion –8– 3500 4000 Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Spectrum Leakage PSD 0 PSD 0 fs = 8192 fin = 779.3 -20 -20 -40 dB dB -40 -60 -60 -80 -80 -100 -100 -120 w/ Blackman window 0 500 1000 1500 2000 2500 Frequency 3000 3500 -120 4000 0 500 1000 1500 2000 2500 Frequency fs = 8192 fin = 779.3 3000 3500 4000 • TD samples must include integer number of cycles of input signal • Windowing can be applied to eliminate spectrum leakage • Trade-off b/t main-lobe width and sideband rejection for different windows –9– Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 FFT Spectrum with Distortion PSD 0 -20 dB -40 HD3 HD9 -60 -80 -100 -120 0 500 1000 1500 2000 2500 Frequency 3000 3500 4000 • High-order harmonics are aliased back, visible in [0, fs/2] band • E.g., HD3 @ 779x3+1=2338, HD9 @ 8192-9x779+1=1182 – 10 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Dynamic Performance SNDR [dB] Peak SNDR Circuit noise Overload 0 VFS SNR Vin 2 / 2 = 10LOG10 2 2 Δ / 12 + σ N Vin dB Vin [dB] Dynamic range • Peak SNDR limited by large-signal distortion of the converter • Dynamic range implies the “theoretical” SNR of the converter – 11 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Dynamic Performance Metrics • Signal-to-noise ratio (SNR) • Total harmonic distortion (THD) • Signal-to-noise and distortion ratio (SNDR or SINAD) • Spurious-free dynamic range (SFDR) • Two-tone intermodulation product (IM3) • Aperture uncertainty (related to the frontend S/H and clock) • Dynamic range (DR) – misleading (avoid it if possible!) • Idle channel noise or pattern noise in oversampled converters – 12 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Evaluating Dynamic Performance PSD SNDR = 59.16 dB THD = 63.09 dB SFDR = 64.02 dB ENOB = 9.535 bits 0 -20 dB -40 HD9 -60 HD3 • Signal-to-noise plus distortion ratio (SNDR) • Total harmonic distortion (THD) • Spurious-free dynamic range (SFDR) -80 -100 ENOB = -120 0 500 1000 1500 2000 2500 Frequency 3000 3500 – 13 – 4000 SNDR -1.76 dB 6.02 dB Data Converters EECT 7327 Data Converter Basics Static Performance Metrics • Offset (OS) • Gain error (GE) • Monotonicity • Linearity (unique to converters) – Differential nonlinearity (DNL) – Integral nonlinearity (INL) – 14 – Professor Y. Chiu Fall 2014 Data Converters EECT 7327 Data Converter Basics Static Performance of DAC – 15 – Professor Y. Chiu Fall 2014 Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 DAC Transfer Characteristic bn b1 ... Vref D/A Digital input Vout • N = # of bits Analog output • VFS = Full-scale input • Δ = VFS/2N = 1LSB • bi = 0 or 1 N Vout N bi = VFS i = Δ bi 2N-i i=1 2 i=1 • Multiplication Note: Vout (bi = 1, for all i) = VFS - Δ = VFS(1-2-N) ≠ VFS – 16 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Ideal DAC Transfer Curve Vout VFS-Δ VFS 2 000 001 010 011 100 – 17 – 101 110 111 Din Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Offset Vout VFS-Δ VFS 2 Vos 000 001 010 011 100 – 18 – 101 110 111 Din Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Gain Error Vout VFS-Δ VFS 2 000 001 010 011 100 – 19 – 101 110 111 Din Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Monotonicity Vout VFS-Δ VFS 2 000 001 010 011 100 – 20 – 101 110 111 Din Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Differential and Integral Nonlinearities Vout VFS-Δ ith Step Size - Δ DNLi = Δ VFS 2 INL DNL < -1 ? 000 001 010 011 100 101 110 111 Din • DNL = deviation of an output step from 1 LSB (= Δ = VFS/2N) • INL = deviation of the output from the ideal transfer curve – 21 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 DNL and INL Vout VFS-Δ i VFS 2 INLi = DNL j j=0 000 001 010 011 100 101 110 111 Din INL = cumulative sum of DNL – 22 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 DNL and INL Vout Vout VFS-Δ VFS-Δ VFS 2 VFS 2 000 001 010 011 100 101 110 111 Din Smooth 000 001 010 011 100 101 110 111 Noisy • DNL measures the uniformity of quantization steps, or incremental (local) nonlinearity; small input signals are sensitive to DNL. • INL measures the overall, or cumulative (global) nonlinearity; large input signals are often sensitive to both INL (HD) and DNL (QE). – 23 – Din Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Measure DNL and INL (Method I) Vout VFS-Δ VFS 2 Endpoint stretch 000 001 010 011 100 101 110 111 Din Endpoints of the transfer characteristic are always at 0 and VFS-Δ – 24 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Measure DNL and INL (Method II) Vout VFS-Δ VFS 2 Least-square fit and stretch (“detrend”) 000 001 010 011 100 101 110 111 Din Endpoints of the transfer characteristic may not be at 0 and VFS-Δ – 25 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Measure DNL and INL Vout Vout VFS-Δ VFS-Δ VFS 2 VFS 2 000 001 010 011 100 101 110 111 Din 000 001 010 011 100 101 110 111 Method I (endpoint stretch) Method II (LS fit & stretch) Σ(INL) ≠ 0 Σ(INL) = 0 – 26 – Din Data Converters EECT 7327 Data Converter Basics Static Performance of ADC – 27 – Professor Y. Chiu Fall 2014 Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Ideal ADC Transfer Characteristic Dout 111 110 101 100 011 010 001 000 0 VFS/2 VFS Vin Note the systematic offset! (floor, ceiling, and round) – 28 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 DNL and Missing Code Dout 111 110 • DNL = ? 101 • Can DNL < -1? 100 011 ith Step Size - Δ DNLi = Δ 010 001 000 0 VFS/2 VFS Vin DNL = deviation of an input step width from 1 LSB (= VFS/2N = Δ) – 29 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 DNL and Nonmonotonicity Dout 111 110 • DNL = ? 101 • How can we even measure this? 100 011 010 001 000 0 VFS/2 VFS Vin DNL = deviation of an input step width from 1 LSB (= VFS/2N = Δ) – 30 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 INL Dout 111 110 101 Any code 100 • Missing? 011 • Nonmonotonic? 010 001 000 0 VFS/2 VFS Vin INL = deviation of the step midpoint from the ideal step midpoint (method I and II …) – 31 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 10-bit ADC Example DNL 2 LSB 1 • 1024 codes 0 • No missing code! -1 -2 0 200 400 600 800 1000 INL 2 LSB 1 • Plotted against the digital code, not Vin • Code density test (CDT) 0 -1 -2 0 200 400 600 800 1000 Code DNL must always be greater or equal to -1 LSB! – 32 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 0 Count Count Code Density Test Uniformly distributed 0 ≤ Vin ≤ VFS Uniformly distributed 0 ≤ Vin ≤ VFS n n n n n n n n ni Δ Δ Δ Δ Δ Δ Δ Δ >Δ 000 001 010 011 100 101 110 111 VFS Vin 000 001 010 0 011 100 101 110 111 VFS ith Step Size - Δ ni - ni DNLi = Δ ni Ball casting problem: # of balls collected by each bin (ni) is proportional to the bin size (converter step size) – 33 – Vin Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 CDT and Nonmonotonicity Dout 111 110 101 100 011 010 001 000 0 VFS/2 VFS Vin • Two transition steps for one code?! How to plot INL/DNL? • CDT can be misleading in determining the static nonlinearity – 34 – Data Converters EECT 7327 Data Converter Basics Nyquist-Rate ADC – 35 – Professor Y. Chiu Fall 2014 Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Nyquist-Rate ADC • Digitizes input signal up to Nyquist frequency (fN=fs/2) • Minimum sample rate (fs) for a given input bandwidth • Each sample is digitized to the maximum resolution of converter • Often referred to as the “black box” version of digitization A/D Analog input ... Vref bn b1 Digital output fs – 36 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Nyquist-Rate ADC (N-Bit, Binary) • Word-at-a-time (1 step)† ← fast – Flash • Level-at-a-time (2N steps) ← slowest – Integrating (Serial) • Bit-at-a-time (N steps) ← slow – Successive approximation – Algorithmic (Cyclic) • Partial word-at-a-time (1 < M ≤ N steps) ← medium – Subranging – Pipeline • Others (1 ≤ M ≤ N step) – Folding ← relatively fast – Interleaving (of flash, pipeline, or SA) ← fastest † the number in the parentheses is the “latency” of conversion, not “throughput” – 37 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Accuracy-Speed Tradeoff 1 word/OSR*Tclk 1 level/Tclk Resolution [Bits] 1 bit/Tclk 20 Integrating Partial word/Tclk Oversampling 15 Successive Approximation 1 word/Tclk Algorithmic Subranging Pipeline Folding & Interpolating Interleaving Flash 10 5 Nyquist Oversampling 0 1k 10k 100k 1M 10M 100M 1G 10G 100G Sample Rate [Hz] – 38 – Data Converters EECT 7327 Data Converter Basics Professor Y. Chiu Fall 2014 Building Blocks for Data Converters • Sample-and-Hold (Track-and-Hold) Amplifier • Switched-Capacitor Amplifiers, Integrators, and Filters • Operational Amplifier • Comparators (Preamplifier and Latch) • Voltage and Current DAC’s • Current Sources • Voltage/Current/Bandgap References – 39 –
© Copyright 2024