FPGA Applications IEEE Micro Special Issue on Reconfigurable Computing Vol. 34, No.1, Jan.-Feb. 2014 Dr. Philip Brisk Department of Computer Science and Engineering University of California, Riverside CS 223 Guest Editors Walid Najjar UCR Paolo Ienne EPFL, Lausanne, Switzerland 2 High-Speed Packet Processing Using Reconfigurable Computing Gordon Brebner and Weirong Jiang Xilinx, Inc. Contributions • PX: a domain-specific language for packet-processing • PX-to-FPGA compiler • Evaluation of PX-designed high-performance reconfigurable computing architectures • Dynamic reprogramming of systems during live packet processing • Demonstrated implementations running at 100 Gbps and higher rates PX Overview • Object-oriented semantics – Packet processing described as component objects – Communication between objects • Engine – Core packet processing functions • Parsing, editing, lookup, encryption, pattern matching, etc. • System – Collection of communicating engines and/or sub • Parsing, editing, lookup, encryption, pattern matching, etc. Interface Objects • Packet – Communication of packets between components • Tuple – Communication of non-packet data between components OpenFlow Packet Classification in PX Send packet to parser engine OpenFlow Packet Classification in PX Parser engine extracts a tuple from the packet Send the tuple to the lookup engine for classification OpenFlow Packet Classification in PX Obtain the classification response from the lookup engine Forward the response to the flowstream output interface OpenFlow Packet Classification in PX Forward the packet (without modification) to the outstream output interface PX Compilation Flow 100 Gbps 10 Gbps : : 512-bit datapath 64-bit datapath Faster to reconfigure the generated architecture than the FPGA itself (not always applicable) OpenFlow Packet Parser (4 Stages) Allowable Packet Structures: (Ethernet, VLAN, IP, TCP/UDP) (Ethernet, IP, TCP/UDP) Stage 1: Stage 2: Stage 3: Stage 4: Ethernet VLAN or IP IP or TCP/UDP TCP/UDP or bypass OpenFlow Packet Parser Max. packet size Structure of the tuple Set relevant members in the tuple Being populated Determine the type of the next section of the packet Max. number of stacked sections Ethernet header expected first I/O interface Determine how far to go in the packet to reach the next section OpenFlow Packet Parser Three-stage Parser Pipeline • Internal units are customized based on PX requirements • Units are firmware-controlled – Specific actions can be altered (within reason) without reconfiguring the FPGA – e.g., add or remove section classes handled at that stage OpenFlow Packet Parser Results Adjust throughput for wasted bits at the end of packets Ternary Content Addressable Memory (TCAM) X = Don’t Care TCAM width and depth are configurable in PX http://thenetworksherpa.com/wp-content/uploads/2012/07/TCAM_2.png TCAM Implementation in PX depth key length The parser (previous example) extracted the tuple TCAM architecture is generated automatically as described by one of the authors’ previous papers result bitwidth Set up TCAM access Collect the result TCAM Architecture TCAM Parameterization • PX Description – Depth (N) – Width – Result width • Operational Properties – Number of rows (R) – Units per row (L) – Internal pipeline stages per unit (H) • Performance – Each unit handles N/(LR) TCAM units – Lookup latency is LH + 2 clock cycles • LH to process the row • 1 cycle for priority encoding • 1 cycle for registered output Results Database Analytics: A Reconfigurable Computing Approach Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Bernard Brezzo, Sameh Asaad, and Donna Eng. Dillenberger IBM T.J. Watson Research Center Example: SQL Query Online Transaction Processing (OLTP) • Rows are compressed for storage and I/O savings • Rows are decompressed when issuing queries • Data pages are cached in a dedicated memory space called the buffer pool • I/O operations between buffer pool and disk are transparent • Data in the buffer pool is always up-to-date Table Traversal • Indexing – Efficient for locating a small number of records • Scanning – Sift through the whole table – Used when a large number of records match the search criteria FPGA-based Analytics Accelerator Workflow • DBMS issues a command to the FPGA – Query specification and pointers to data • FPGA – Pulls pages from main memory – Parses pages to extract rows – Queries the rows – Writes qualifying queries back to main memory in database-formatted pages FPGA Query Processing • Join and sort operations are not streaming – Data re-use is required – FPGA block RAM storage is limited – Perform predicate evaluation and projection before join and sort • Eliminate disqualified rows • Eliminate unneeded columns Where is the Parallelism? • Multiple tiles process DB pages in parallel – Concurrently evaluate multiple records from a page within a tile • Concurrently evaluate multiple predicates against different columns within a row Predicate Evaluation Stored predicate values Logical Operations (Depends on query) #PEs and reduction network size are configurable at synthesis time Two-Phase Hash-Join • Stream the smaller join table through the FPGA • Hash the join columns to populate a bit vector • Store the full rows in off-chip DRAM • Join columns and row addresses are stored in the address table (BRAM) • Rows that hash to the same position are chained in the address table • Stream the second table through the FPGA • Hash rows to probe the bit vector (eliminate non-matching rows) • Matches issue reads from off-chip DRAM • Reduces off-chip accesses and stalls Database Sort • Support long sort keys (tens of bytes) • Handle large payloads (rows) • Generate large sorted batches (millions of records) • Coloring bins keys into sorted batches https://en.wikipedia.org/wiki/Tournament_sort CPU Savings Predicate Eval. Decompression + Predicate Eval. Throughput and FPGA Speedup Scaling Reverse Time Migration Performance Through Reconfigurable Dataflow Engines Haohan Fu1, Lin Gan1, Robert G Clapp2, Huabin Ruan1, Oliver Pell3, Oskar Mencer3, Michael Flynn2, Xiaomeng Huang1, and Guangwen Yang1 1Tsinghua University 2Stanford University 3Maxeler Technologies Migration (Geology) https://upload.wikimedia.org/wikipedia/commons/3/38/GraphicalMigration.jpg Reverse Time Migration (RTM) • Imaging algorithm • Used for oil and gas exploration • Computationally demanding RTM Pseudocode Iterations over shots (sources) are independent and easy to parallelize Add the recorded source signal to the corresponding location Iterate over time-steps, and 3D grids Propagate source wave fields from time 0 to nt - 1 Boundary conditions Iterate over time-steps, and 3D grids Add the recorded receiver signal to the corresponding location Boundary conditions Propagate receiver wave fields from time nt - 1 to 0 Cross-correlate the source and receiver wave field at the same time step to accumulate the result RTM Computational Challenges • Cross-correlate source and receiver signals – Source/receiver wave signals are computed in different directions in time – The size of a source wave field for one time-step can be 0.5 to 4 GB – Checkpointing: store source wave field and certain time steps and recompute the remaining steps when needed • Memory access pattern – Neighboring points may be distant in the memory space – High cache miss rate (when the domain is large) Hardware General Architecture Java-like HDL / MaxCompiler Stencil Example Data type: no reason that all floatingpoint data must be 32- or 64-bit IEEE compliant (float/double) Automated construction of a window buffer that covers different points needed by the stencile Performance Tuning • Optimization strategies – Algorithmic requirements – Hardware resource limits • Balance resource utilization so that none becomes a bottleneck – – – – LUTs DSP Blocks block RAMs I/O bandwidth Algorithm Optimization • Goal: – Avoid data transfer required to checkpoint source wave fields • Strategies: – Add randomness to the boundary region – Make computation of source wave fields reversible Custom BRAM Buffers 37 pt. Star Stencil on a MAX3 DFE • 24 concurrent pipelines at 125 MHz • Concurrent access to 37 points per cycle • Internal memory bandwidth of 426 Gbytes/sec More Parallelism • Process multiple points concurrently – Demands more I/O • Cascade multiple time steps in a deep pipeline – Demands more buffers Number Representation • 32-bit floating-point was default • Convert many variables to 24-bit fixed-point – Smaller pipelines => MORE pipelines Floating-point - 16,943 LUTs - 23,735 flip-flops - 24 DSP48Es Fixed-point - 3,385 LUTs - 3,718 flip-flops - 12 DSP48Es Hardware Decompression • I/O is a bottleneck – Compress data off-chip – Decompress on the fly – Higher I/O bandwidth • Wave field data – Must be read and written many times – Lossy compression acceptable • 16-bit storage of 32-bit data • Velocity data and read-only Earth model parameters – Store values in a ROM – Create a table of indices into the ROM • Decompression requires ~1300 LUTs and ~1200 flip-flops Results Performance Model • Memory bandwidth constraint # points processed in parallel # bytes per point compression ratio frequency memory bandwidth • Resource constraint (details omitted) Performance Model • Cost (cycles consumed on redundant streaming of overlapping halos) • Model # points processed in parallel # time steps cascaded in one pass frequency Model Evaluation Fast, Flexible High-Level Synthesis from OpenCL Using Reconfiguration Contexts James Coole and Greg Stitt University of Florida Compiler Flow • Intermediate Fabric – Coarse-grained network of arithmetic processing units synthesized on the FPGA – 1000x faster place-androute than an FPGA directly – 72-cycle maximum reconfiguration time Intermediate Fabric The intermediate fabric can implement each kernel by reconfiguring the fabric routing network The core arithmetic operators are often shared across kernels Multiple datapaths per kernel • Reconfigure the FPGA to swap datapaths Reconfiguration Contexts • One intermediate fabric may not be enough • Generate an application-specific set of intermediate fabrics • Reconfigure the FPGA to switch between intermediate fabrics Context Design Heuristic • Maximize number of resources reused across kernels in a context • Minimize area of individual contexts • Use area savings to scale-up contexts to support kernels that were not known at context design-time • Kernels grouped using Kmeans clustering Compiler Results Configuration Bitstream Sizes and Recompilation Times ReconOS: An Operating Systems Approach for Reconfigurable Computing Andreas Agne1, Markus Happe2, Ariane Keller2, Enno Lübbers3, Bernhard Plattner2, Marco Platzner1, and Christian Plessl1 1University of Paderborn, Germany 2ETH Zürich, Switzerland 3Intel Labs, Europe Does Reconfigurable Computing Need an Operating System? • Application partitioning – Sequential: – Parallel/deeply pipelined: Software/CPU Hardware/FPGA • Partitioning requires – Communication and synchronization • The OS provides – Standardization and portability • The alternative is – – – – System- and application-specific services Error-prone Limited portability Reduced designer productivity ReconOS Benefits • Application development is structured and starts with software • Hardware acceleration is achieved by design space exploration • OS-defined synchronization and communication mechanisms provide portability • Hardware and software threads are the same from the application development perspective • Implicit support for partial dynamic reconfiguration of the FPGA Programming Model • Application partitioned into threads (HW/SW) • Threads communicate and synchronize using one of the programming model’s objects – Communication: Message queues, mailboxes, etc. – Synchronization: Mutexes Stream Processing Software Stream Processing Hardware OSFSM in VHDL • VHDL library wraps all OS calls with VHDL procedures – Transitions are guarded by an OS-controlled signal • done, Line 47 – Blocking OS calls can pause execution of a HW thread • e.g., mutex_lock(), ReconOS System Architecture Delegate Thread • Interface between HW thread and the OS via OSIF • The OS is oblivious to HW acceleration • Imposes non-negligible overhead on OS calls OSFSM / OSIF / CPU Interface • Handshaking provides synchronization • OS requests are a sequence of words communicated via FIFOs HW Thread Interfaces ReconOS Toolflow Example: Object Tracking
© Copyright 2024