Information, entropy and all that 지동표 울산과기대, 서울대 Event의 값어치 • 확률 𝑝로 일어나는 사건이 관찰되었을 때 이 관찰(정보)의 값어치는 (?) • 희귀할수록 값어치가 커야 함. 1 • Is it 𝑝? • 서로 독립인 두 사건이 확률 𝑝, 𝑞로 동시에 일어날 때의 값어치 = 1 (?) 𝑝𝑝 = 각각의 값어치의 곱 • 전체의 값어치는 각각의 값어치의 합이 되는 것이 정서에 맞음 • How about 값어치 = − log 𝑝? Then − log 𝑝𝑝 = − log 𝑝 + (− log 𝑞) O.K. Event의 값어치 • 어떤 확률 분포를 갖는 정보의 평균 값어치 = − ∑𝑖∈𝑥 𝑝𝑖 𝑙𝑙𝑙 𝑝𝑝 • Measure of uncertainty = measure of information 어떤 사건을 관찰하기 전에는 uncertainty 그러나 관찰되고 난 후에는 information obtained • Entropy 𝐻 𝑥 ≔ − ∑𝑖∈𝑥 𝑝𝑖 log 𝑝𝑝 (uncertainty의 평균 또한 정보의 평균) Event의 값어치 • Joint entropy 𝐻 𝑋, 𝑌 = − ∑ ∑ 𝑝 𝑥, 𝑦 log 𝑝 𝑥, 𝑦 • Conditional entropy 𝐻 𝑌 𝑋 = � 𝑝 𝑥 𝐻 𝑌 𝑋 = 𝑥 = � � −𝑝 𝑥, 𝑦 log 𝑝(𝑦|𝑥) (𝑋를 알고 있을 때 𝑌에 대한 uncertainty) • 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋 전체의 uncertainty는 𝑋의 uncertainty + 𝑋를 알았을 때 𝑌에 대한 uncertainty 𝑝(𝑥,𝑦) • 𝐼 𝑋: 𝑌 = ∑ ∑ 𝑝 𝑥, 𝑦 𝑙𝑙𝑙 𝑝 𝑥 𝑝(𝑦) = 𝐻 𝑋 − 𝐻(𝑋|𝑌) (mutual information) 𝑌를 관찰해서 얻은 𝑋에 대한 정보 note: 𝐼 𝑋: 𝑌 = 𝐼 𝑌: 𝑋 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌) Asymptotic Equipartition Property (AEP) • Empirical average 1 𝑓 𝑥1 + ⋯ 𝑓 𝑥𝑛 𝑛 𝑥𝑖 는 independent sampling of (𝑋, 𝑃) • True average ∑ 𝑓 𝑥 𝑝(𝑥) • Th (Weak Theorem of Large numbers) empirical average true average 𝑛→∞ (in probability) • 𝑓 𝑥 = − log 𝑝 (𝑥) 라 놓으면 1 empirical average = log 𝑝 𝑥1 ⋯ 𝑥𝑛 𝑛 true average = H(X) Asymptotic Equipartition Property (AEP) • 즉, 𝑝 𝑥1 ⋯ 𝑥𝑛 ≈ 2−𝑛𝑛(𝑋) (거의 모든 경우에) (typical event라 함) 이런 사건 𝑥1 ⋯ 𝑥𝑛 개수 ≈ 2𝑛𝑛(𝑋) Typical event ≈ 2𝑛𝑛(𝑋) 그러나 확률적으로는 거의 전부 (≈ 1) |𝑋|𝑛 = 2𝑛𝑛𝑛𝑛2|𝑋| 𝑋 = (𝑋의 크기) Shannon의 source coding theorem (Data compression) • Data 𝑋 𝑛 을 𝑛𝑛(𝑋) bit으로 압축할 수 있다. (optimal) (idea: generic element만 살리고 나머지는 버려라) 실제로 LZW, MP3, MPEG, JPEG 등 • Channel X 𝑛𝑜𝑜𝑜𝑜 𝑙𝑜𝑜𝑜 Y 𝑝 𝑏 𝑎 (𝑎를 보낼 때 𝑏가 나올 확률)가 channel을 characterize Shannon의 noisy channel theorem Fuzzy 2𝑛𝑛(𝑌|𝑋) • 따라서 약 2𝑛𝑛(𝑋) 2𝑛𝑛(𝑌) 만을 2𝑛𝑛(𝑌|𝑋) 2𝑛𝑛(𝑌) 잘 보낼 수 있다. 2𝑛𝑛(𝑌) = 2𝑛(𝐻 𝑛𝑛(𝑌|𝑋) 2 𝑌 −𝐻(𝑌|𝑋)) = 2𝑛(𝐻 𝑌 −𝐻 𝑋,𝑌 −𝐻(𝑋)) = 2𝑛𝑛(𝑋:𝑌) Shannon의 noisy channel theorem • 𝐶 ≔ 𝑚𝑚𝑚𝑝 𝑥 𝐼 𝑋: 𝑌 그러면 𝐶 − 𝜀 rate로 거의 error 없이 보낼 수 있고 𝐶 + 𝜀 rate는 많은 error가 생김. (구체적인 coding도 많이 만들어지고 있다) Slepian- Wolf의 distributed source coding theorem • 𝐻 𝑋 𝑌 (= 𝐻 𝑋, 𝑌 − 𝐻(𝑌))를 prior information을 𝑌를 가졌지만 아직 𝑋에 대하여 잘 모르는 량 (partial information) • Th (Slepian-Wolf) 𝑋가 𝑌에게 H(𝑋|𝑌)만큼 정보를 주어 𝑌가 𝑋에 대하여 전부 알 게 할 수 있다. (구체적인 protocol) 𝑛𝑛 2 law of thermodynamics • Clausius: No process is possible whose sole result is the transfer of heat from a colder to a hotter body • Kelvin: No process possible whose sole result is the complete conversion of heat into work • Carnot: Of all the heat engines working between given temperatures, none is more efficient than a Carnot engine Clausius’ theorem • For any close cycle, ∮ 𝑑𝑑 𝑇 ≤0 with equality necessarily holds for a reversible cycle. Maxwell’s demon 빠른 놈만 열역학 제 2 법칙이 break! Szillard, Landauer, Bennet, Llyod, Sugawa ,etc exorcise the Maxwell demon • Information theoretic entropy 와 thermodynamic entropy의 합에 열역학 제 2법칙을 적용 • • • • • Information is physical! Physics is information! Forgetting increases the entropy of the universe 가상세계, 현실 세계 Are they different? Quantum Information Theory • Shannon entropy 𝐻 𝑋 = − ∑ 𝑝𝑖𝑙𝑙𝑙𝑙𝑖 bit (0/1) von Neumann entropy 𝑆 𝜌 = −𝑡𝑡 𝜌𝑙𝑙𝑙𝜌 qubit (|0>,|1>) far more subtle than classical • 고전정보와 양자정보 사이의 관계 • Measurement problem • 새로운 물리량 entanglement (ebit) • Conditional entropy 𝑆 𝐴 𝐵 = 𝑆 𝐴𝐴 − 𝑆(𝐵) Quantum Information Theory • 𝑆(𝐴|𝐵) could be negative in quantum information! • Negative information exists in quantum world. • 𝑆(𝐴|𝐵)의 operational meaning (고전정보에서는 Slepian – Wolf th) • When 𝑆(𝐴|𝐵) negative, • Bob knows too much • If I tell you, you’ll know less. • But I and Bob would share maximally entangled states(−𝑆(𝐴|𝐵)만큼) which could be used in teleportation latter. Quantum version of Slepian-Wolf th (Quantum State Merging 𝑆(𝐴|𝐵)의 operational meaning) 𝜌𝐴𝐴 : given • When 𝑆 𝐴 𝐵 > 0, the merging is possible if only if R > 𝑆(𝐴|𝐵) ebits per input copy are provided. • When 𝑆 𝐴 𝐵 < 0, the merging is possible by LOCC and moreover R < −𝑆(𝐴|𝐵) ebits obtained per input copy. Quantum version of Slepian-Wolf th (Quantum State Merging 𝑆(𝐴|𝐵)의 operational meaning) • Remark: −𝑆 𝐴 𝐵 = 𝑆 𝐵 − 𝑆 𝐴𝐴 =: 𝐼(𝐴 > 𝐵) called coherent information • Previously known (Shor 등) channel capacity of quantum channel = 𝑚𝑚𝑚𝜌𝐴 𝐼(𝐴 > 𝐵) Many Applications of State Merging 1) Distributed Compression :given 𝜌𝐴1⋯𝐴𝑚 :object: each party compress their share so that full state can be reconstructed by a single decoder. : 𝑅1 ⋯ 𝑅𝑚 achievable if ∃ (𝑚 + 1) party LOCC taking 𝜌𝐴⊗𝑛⋯𝐴 , whose 1 𝑚 ⊗𝑛 purification is 𝜓𝑅𝑅 ⋯𝐴 , and 𝑛(𝑅𝑅 + 𝜀) ebits between 𝐴𝑖 and decoder 𝐵. obtain the 1 𝑚 final state 𝜌𝑅𝑛𝐵1′⋯𝐵𝑚′ with 𝐹 𝜌, 𝜓 ⊗𝑛 ≥ 1 − 𝜀. Many Applications of State Merging 2) Quantum Source Coding with side Information at the decoder: the decoder decode the state of Alice, while Bob’s state only used to help in decoding 3) Multipartite Entanglement of Assistance: pure state shared by many parties, and the goal is to distill the maximal amount of entanglement between two parties. 4) Capacity Region for the multiple access channel: two share a quantum channel, find optimal rate. 5) Solution to the long standing problem on negative coherent information. 5) Strong Subadditivity 𝑆(𝐴|𝐵𝐵) ≤ 𝑆(𝐴|𝐵) If Bob has access to an additional registers, then Alice doesn’t need to send more partial information for him to get full state 𝜌𝐴𝐴 . Stronger version of merging protocol • Called Fully Quantum Slepian – Wolf protocol (or Mother protocol) 1 < 𝑊 𝑆→𝐴𝐴 : 𝜑 𝑠 > + I(A:R)𝜑 𝑞 → 𝑞 1 𝐼 2 2 ≥ 𝐴: 𝐵 𝜑 𝑞𝑞 +< 𝑖𝑖 𝑠→𝐵 : 𝜑𝑠 > note that 𝑞𝑞 + 2 𝑐 → 𝑐 = [𝑞 → 𝑞](teleportation) Hence we obtain < 𝑊 𝑆→𝐴𝐴 : 𝜑 𝑠 > +𝑆(AB)𝜑 𝑞 → 𝑞 + 𝐼 𝐴: 𝐵 𝜑 𝑐 → 𝑐𝑐 ≥< 𝑖𝑖 𝑠→𝐵 : 𝜑𝑠 > Thank you
© Copyright 2024